Artifact fe0c174c62c70553e0ae3432c0a3a9b74bd6833e81219f193eba4b0edd7a16b7:
- Executable file
r36/XMPL/RSOLVE.TST
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 2677) [annotate] [blame] [check-ins using] [more...]
% Test file for i_solve and r_solve operators. % Author: F.J.Wright@Maths.QMW.ac.uk % Version 1.051, 16 Jan 1995 i_solve((x - 10)*(x + 20)*(x - 30)*(x + 40)*(x - 50)); % {x=-20,x=-40,x=50,x=30,x=10} i_solve(x^4 - 1, x); % {x=1,x=-1} i_solve(x^4 + 1); % {} r_solve((x^2 - 1)*(x^2 - 9)); % {x=1,x=-3,x=3,x=-1} r_solve(9x^2 - 1); % 1 - 1 % {x=---,x=------} % 3 3 r_solve(9x^2 - 4, x); % - 2 2 % {x=------,x=---} % 3 3 r_solve(9x^2 + 16, x); % {} r_solve((9x^2 - 16)*(x^2 - 9), x); % - 4 4 % {x=------,x=3,x=-3,x=---} % 3 3 % First two examples from Loos' paper: % =================================== r_solve(6x^4 - 11x^3 - x^2 - 4); % - 2 % {x=------,x=2} % 3 r_solve(2x^3 + 12x^2 + 13x + 15); % {x=-5} % Remaining four CORRECTED examples from Loos' paper: % ================================================== r_solve(2x^4 - 4x^3 + 3x^2 - 5x - 2); % {x=2} r_solve(6x^5 + 11x^4 - x^3 + 5x - 6); % - 3 2 % {x=------,x=---} % 2 3 r_solve(x^5 - 5x^4 + 2x^3 - 25x^2 + 21x + 270); % {x=3,x=5,x=-2} r_solve(2x^6 + x^5 - 9x^4 - 6x^3 - 5x^2 - 7x + 6); % 1 % {x=---,x=-2} % 2 % Degenerate equations: % ==================== i_solve 0; % {} i_solve(0, x); % {x=arbint(1)} r_solve(a = a, x); % {x=arbrat(2)} r_solve(x^2 - 1, y); % {} % Test of options and multiplicity: % ================================ i_solve(x^4 - 1, x, noeqs); % {1,-1} i_solve((x^4 - 1)^3, x); % {x=1,x=-1} root_multiplicities; % {3,3} on multiplicities; i_solve((x^4 - 1)^3, x); % {x=1,x=1,x=1,x=-1,x=-1,x=-1} root_multiplicities; % {} i_solve((x^4 - 1)^3, x, separate); % {x=1,x=-1} root_multiplicities; % {3,3} off multiplicities; i_solve((x^4 - 1)^3, x, multiplicities); % {x=1,x=1,x=1,x=-1,x=-1,x=-1} root_multiplicities; % {} i_solve((x^4 - 1)^3, x, expand, noeqs); % {1,1,1,-1,-1,-1} root_multiplicities; % {} i_solve((x^4 - 1)^3, x, together); % {{x=1,3},{x=-1,3}} root_multiplicities; % {} i_solve((x^4 - 1)^3, x, together, noeqs); % {{1,3},{-1,3}} root_multiplicities; % {} i_solve((x^4 - 1)^3, x, nomul); % {x=-1,x=1} root_multiplicities; % {} % Test of error handling: % ====================== on errcont; r_solve(); % ***** r/i_solve called with no equations r_solve(x^2 - a, x); % 2 % ***** - a + x invalid as univariate polynomial over Z r_solve(x^2 - 1, x, foo); % ***** foo invalid as optional r/i_solve argument r_solve({x^2 - 1}, x); % 2 % ***** {x - 1} invalid as univariate polynomial over Z on complex; i_solve((x-1)*(x-i), x); % 2 % ***** - i*x + i + x - x invalid as univariate polynomial over Z end$