Artifact e95e85fa065ff2d2a2cf5bd1f30f22c437e1207df7d0d8a59feeaa15ecb84efc:
- Executable file
r37/doc/help/matrix.tex
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 11990) [annotate] [blame] [check-ins using] [more...]
- Executable file
r38/doc/help/matrix.tex
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 11990) [annotate] [blame] [check-ins using]
\section{Matrix Operations} \begin{Operator}{COFACTOR} \index{matrix} The operator \name{cofactor} returns the cofactor of the element in row \meta{row} and column \meta{column} of a \nameref{matrix}. Errors occur if \meta{row} or \meta{column} do not evaluate to integer expressions or if the matrix is not square. \begin{Syntax} \name{cofactor}\(\meta{matrix\_expression},\meta{row},\meta{column}\) % COFACTOR(EXPRN:matrix_expression,ROW:integer,COLUMN:integer):algebraic \end{Syntax} \begin{Examples} cofactor(mat((a,b,c),(d,e,f),(p,q,r)),2,2); & A*R - C*P \\ cofactor(mat((a,b,c),(d,e,f)),1,1); & ***** non-square matrix \end{Examples} \end{Operator} \begin{Operator}{DET} \index{matrix}\index{determinant} The \name{det} operator returns the determinant of its (square \nameref{matrix}) argument. \begin{Syntax} \name{det}\(\meta{expression}\) or \name{det} \meta{expression} \end{Syntax} \meta{expression} must evaluate to a square matrix. \begin{Examples} matrix m,n; \\ m := mat((a,b),(c,d)); & \begin{multilineoutput}{4cm} M(1,1) := A M(1,2) := B M(2,1) := C M(2,2) := D \end{multilineoutput}\\ det m; & A*D - B*C \\ n := mat((1,2),(1,2)); & \begin{multilineoutput}{4cm} N(1,1) := 1 N(1,2) := 2 N(2,1) := 1 N(2,2) := 2 \end{multilineoutput} \\ det(n); & 0 \\ det(5); & 5 \end{Examples} \begin{Comments} Given a numerical argument, \name{det} returns the number. However, given a variable name that has not been declared of type matrix, or a non-square matrix, \name{det} returns an error message. \end{Comments} \end{Operator} \begin{Operator}{MAT} \index{matrix} The \name{mat} operator is used to represent a two-dimensional \nameref{matrix}. \begin{Syntax} \name{mat}\(\(\meta{expr}\{,\meta{expr}\}\optional\)% \{\(\meta{expr}\{\name{,}\meta{expr}\}\optional\)\}\optional\) \end{Syntax} \meta{expr} may be any valid REDUCE scalar expression. \begin{Examples} mat((1,2),(3,4)); & \begin{multilineoutput}{6cm} MAT(1,1) := 1 MAT(2,3) := 2 MAT(2,1) := 3 MAT(2,2) := 4 \end{multilineoutput}\\ mat(2,1); & \begin{multilineoutput}{6cm} ***** Matrix mismatch Cont? (Y or N) \end{multilineoutput}\\ matrix qt; \\ qt := ws; & \begin{multilineoutput}{6cm} QT(1,1) := 1 QT(1,2) := 2 QT(2,1) := 3 QT(2,2) := 4 \end{multilineoutput}\\ matrix a,b; \\ a := mat((x),(y),(z)); & \begin{multilineoutput}{6cm} A(1,1) := X A(2,1) := Y A(3,1) := Z \end{multilineoutput}\\ b := mat((sin x,cos x,1)); & \begin{multilineoutput}{6cm} B(1,1) := SIN(X) B(1,2) := COS(X) B(1,3) := 1 \end{multilineoutput} \end{Examples} \begin{Comments} Matrices need not have a size declared (unlike arrays). \name{mat} redimensions a matrix variable as needed. It is necessary, of course, that all rows be the same length. An anonymous matrix, as shown in the first example, must be named before it can be referenced (note error message). When using \name{mat} to fill a \IFTEX{$1 \times n$}{1 x n} matrix, the row of values must be inside a second set of parentheses, to eliminate ambiguity. \end{Comments} \end{Operator} \begin{Operator}{MATEIGEN} \index{matrix}\index{eigenvalue} The \name{mateigen} operator calculates the eigenvalue equation and the corresponding eigenvectors of a \nameref{matrix}. \begin{Syntax} \name{mateigen}\(\meta{matrix-id},\meta{tag-id}\) \end{Syntax} \meta{matrix-id} must be a declared matrix of values, and \meta{tag-id} must be a legal REDUCE identifier. \begin{Examples} aa := mat((2,5),(1,0))\$ \\ mateigen(aa,alpha); & \begin{multilineoutput}{2cm} \{\{ALPHA^{2} - 2*ALPHA - 5, 1, MAT(1,1) := \rfrac{5*ARBCOMPLEX(1)}{ALPHA - 2}, MAT(2,1) := ARBCOMPLEX(1) \}\} \end{multilineoutput}\\ charpoly := first first ws; & CHARPOLY := ALPHA^{2} - 2*ALPHA - 5 \\ bb := mat((1,0,1),(1,1,0),(0,0,1))\$ \\ mateigen(bb,lamb); & \begin{multilineoutput}{6cm} \{\{LAMB - 1,3, [ 0 ] [ARBCOMPLEX(2)] [ 0 ] \}\} \end{multilineoutput} \end{Examples} \begin{Comments} The \name{mateigen} operator returns a list of lists of three elements. The first element is a square free factor of the characteristic polynomial; the second element is its multiplicity; and the third element is the corresponding eigenvector. If the characteristic polynomial can be completely factored, the product of the first elements of all the sublists will produce the minimal polynomial. You can access the various parts of the answer with the usual list access operators. If the matrix is degenerate, more than one eigenvector can be produced for the same eigenvalue, as shown by more than one arbitrary variable in the eigenvector. The identification numbers of the arbitrary complex variables shown in the examples above may not be the same as yours. Note that since \name{lambda} is a reserved word in REDUCE, you cannot use it as a {\it tag-id} for this operator. \end{Comments} \end{Operator} \begin{Declaration}{MATRIX} Identifiers are declared to be of type \name{matrix}. \begin{Syntax} \name{matrix} \meta{identifier} \&option \(\meta{index},\meta{index}\)\\ \{,\meta{identifier} \&option \(\meta{index},\meta{index}\)\}\optional \end{Syntax} \meta{identifier} must not be an already-defined operator or array or the name of a scalar variable. Dimensions are optional, and if used appear inside parentheses. \meta{index} must be a positive integer. \begin{Examples} matrix a,b(1,4),c(4,4); \\ b(1,1); & 0 \\ a(1,1); & ***** Matrix A not set \\ a := mat((x0,y0),(x1,y1)); & \begin{multilineoutput}{6cm} A(1,1) := X0 A(1,2) := Y0 A(2,1) := X0 A(2,2) := X1 \end{multilineoutput}\\ length a; & \{2,2\} \\ b := a**2; & \begin{multilineoutput}{6cm} B(1,1) := X0^{2} + X1*Y0 B(1,2) := Y0*(X0 + Y1) B(2,1) := X1*(X0 + Y1) B(2,2) := X1*Y0 + Y1^{2} \end{multilineoutput} \end{Examples} \begin{Comments} When a matrix variable has not been dimensioned, matrix elements cannot be referenced until the matrix is set by the \nameref{mat} operator. When a matrix is dimensioned in its declaration, matrix elements are set to 0. Matrix elements cannot stand for themselves. When you use \nameref{let} on a matrix element, there is no effect unless the element contains a constant, in which case an error message is returned. The same behavior occurs with \nameref{clear}. Do \meta{not} use \nameref{clear} to try to set a matrix element to 0. \nameref{let} statements can be applied to matrices as a whole, if the right-hand side of the expression is a matrix expression, and the left-hand side identifier has been declared to be a matrix. Arithmetical operators apply to matrices of the correct dimensions. The operators \name{+} and \name{-} can be used with matrices of the same dimensions. The operator \name{*} can be used to multiply \IFTEX{$m \times n$}{m x n} matrices by \IFTEX{$n \times p$}{n x p} matrices. Matrix multiplication is non-commutative. Scalars can also be multiplied with matrices, with the result that each element of the matrix is multiplied by the scalar. The operator \name{/} applied to two matrices computes the first matrix multiplied by the inverse of the second, if the inverse exists, and produces an error message otherwise. Matrices can be divided by scalars, which results in dividing each element of the matrix. Scalars can also be divided by matrices when the matrices are invertible, and the result is the multiplication of the scalar by the inverse of the matrix. Matrix inverses can by found by \name{1/A} or \name{/A}, where \name{A} is a matrix. Square matrices can be raised to positive integer powers, and also to negative integer powers if they are nonsingular. When a matrix variable is assigned to the results of a calculation, the matrix is redimensioned if necessary. \end{Comments} \end{Declaration} \begin{Operator}{NULLSPACE} \index{matrix} \begin{Syntax} \name{nullspace}(\meta{matrix\_expression}) \end{Syntax} \meta{nullspace} calculates for its \nameref{matrix} argument, \name{a}, a list of linear independent vectors (a basis) whose linear combinations satisfy the equation $a x = 0$. The basis is provided in a form such that as many upper components as possible are isolated. \begin{Examples} nullspace mat((1,2,3,4),(5,6,7,8)); & \begin{multilineoutput}{6cm} \{ [ 1 ] [ ] [ 0 ] [ ] [ - 3] [ ] [ 2 ] , [ 0 ] [ ] [ 1 ] [ ] [ - 2] [ ] [ 1 ] \} \end{multilineoutput} \end{Examples} \begin{Comments} Note that with \name{b := nullspace a}, the expression \name{length b} is the {\em nullity\/} of A, and that \name{second length a - length b} calculates the {\em rank\/} of A. The rank of a matrix expression can also be found more directly by the \nameref{rank} operator. In addition to the REDUCE matrix form, \name{nullspace} accepts as input a matrix given as a \nameref{list} of lists, that is interpreted as a row matrix. If that form of input is chosen, the vectors in the result will be represented by lists as well. This additional input syntax facilitates the use of \name{nullspace} in applications different from classical linear algebra. \end{Comments} \end{Operator} \begin{Operator}{RANK} \index{matrix} \begin{Syntax} \name{rank}(\meta{matrix\_expression}) \end{Syntax} \name{rank} calculates the rank of its matrix argument. \begin{Examples} rank mat((a,b,c),(d,e,f)); & 2 \end{Examples} \begin{Comments} The argument to \name{rank} can also be a \nameref{list} of lists, interpreted either as a row matrix or a set of equations. If that form of input is chosen, the vectors in the result will be represented by lists as well. This additional input syntax facilitates the use of \name{rank} in applications different from classical linear algebra. \end{Comments} \end{Operator} \begin{Operator}{TP} \index{transpose}\index{matrix} The \name{tp} operator returns the transpose of its \nameref{matrix} argument. \begin{Syntax} \name{tp} \meta{identifier} or \name{tp}\(\meta{identifier}\) \end{Syntax} \meta{identifier} must be a matrix, which either has had its dimensions set in its declaration, or has had values put into it by \name{mat}. \begin{Examples} matrix m,n; \\ m := mat((1,2,3),(4,5,6))$ \\ n := tp m; & \begin{multilineoutput}{6cm} N(1,1) := 1 N(1,2) := 4 N(2,1) := 2 N(2,2) := 5 N(3,1) := 3 N(3,2) := 6 \end{multilineoutput} \end{Examples} \begin{Comments} In an assignment statement involving \name{tp}, the matrix identifier on the left-hand side is redimensioned to the correct size for the transpose. \end{Comments} \end{Operator} \begin{Operator}{TRACE} \index{matrix} The \name{trace} operator finds the trace of its \nameref{matrix} argument. \begin{Syntax} \name{trace}\(\meta{expression}\) or \name{trace} \meta{simple\_expression} \end{Syntax} \meta{expression} or \meta{simple\_expression} must evaluate to a square matrix. \begin{Examples} matrix a; \\ a := mat((x1,y1),(x2,y2))\$ \\ trace a; & X1 + Y2 \end{Examples} \begin{Comments} The trace is the sum of the entries along the diagonal of a square matrix. Given a non-matrix expression, or a non-square matrix, \name{trace} returns an error message. \end{Comments} \end{Operator}