Artifact e77b5bf2de5bd0aa1eac43ccc0a47da92edaad411ba369eec2b074b00e21cc22:
- File
r34.1/lib/noncom2.red
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 27610) [annotate] [blame] [check-ins using] [more...]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % N O N C O M 2 % % % % A Package to redefine % % noncommutativity in REDUCE % % % % Author: Mathias Warns % % Physics Institute % % University of Bonn % % Nussallee 12 % % D-5300 BONN 1 (F.R.G.) % % <UNP008@DBNRHRZ1.bitnet> % % % % Version: 2.5 06 Jan 92 % % % % % % Designed for: REDUCE version 3.3 / 3.4 % % Tested on : - IBM 3081/3084/9000-620 VM/CMS MVS/XA % % SLISP implementation of REDUCE % % PSL/370 implementation of REDUCE % % - Intel 386/486 AT compatible % % PSL implementation of REDUCE % % % % Copyright (c) Mathias Warns 1990 - 1992 % % % % % % Permission is granted to any individual or institution to % % use, copy or re-distribute this software as long as it is % % not sold for profit, provided that this copyright notice % % is retained and the file is not altered. % % % % **** Summary of changes since version 1.0 **** % % % % - Various small bugs have been corrected in the utility % % functions % % - The sloppy use of CAR on atoms allowed in SLISP systems has % % been removed % % - The pattern matching routine SUBS3TNC has been entirely % % recoded for greater efficiency and is now used for ALL % % terms (not only for the noncommuting cases) % % Procedures SUBLIST, LOCATE!_N and MTCHP1!* added % % - Enhanced tracing utilities added % % - NONCOMP has been changed to NONCOMP!* since the former % % cannot be redefined on some systems % % 2.0 100691 mw : % % - deleting functions recoded % % - append replaced by nconc everywhere % % - switch MYMATCH added to choose between pattern matchers % % - procedures NONCOM and NONCOMMUTING modified % % 2.5 210891 mw % % - Bug in SUBSTNC corrected and enhanced % % - procedure ZERLEG added for much faster handling of s. t. % % - procedure !*SUBS3TNC modfified accordingly % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %------------------------------------------------------------------ % this package relies on modified standard reduce routines % % and is therefore version dependent % %------------------------------------------------------------------- module noncom2; fluid '(!*nosq !*mymatch); % !*nosq needed for 3.4 !*nosq := t; switch mymatch; !*mymatch := t; %this is the default %------------------------------% % general utility functions % %------------------------------% symbolic procedure trwrite u; begin scalar x; if not flagp(car u,'tracing) then return nil; write "**in procedure: ", car u; terpri(); for each x in cdr u do write x; terpri(); end; symbolic procedure funtrace u; for each x in u do flag(list(x),'tracing); deflist('((trwrite rlis) (funtrace rlis)),'stat); symbolic procedure pnth!*(u,n); % slightly modified from pnth if null u then nil else if n=1 then u else pnth!*(cdr u,n-1); symbolic procedure nth!*(u,n); if length(u) < n then nil else car pnth!*(u,n); symbolic procedure revassoc(u,v); % added 140791 mw % revesre of assoc % checks the a-list v for a pair whose CDR is u begin scalar x; if not listp v then rederr "invalid argument to revassoc"; a: if null v then return; x := car v; v := cdr v; if (pairp x) and (cdr x = u) then return car x; go to a; end; symbolic procedure kernelp u; %new % checks if an algebraic expression is a kernel if null u or domain!*p u then nil else if idp u then t else if listp u and idp car u and not (car u memq '(!*sq set setq plus minus difference times quotient)) then t else nil; symbolic procedure spp u; %new % checks if u is a standard power pairp u and kernelp car u; symbolic procedure stp u; %new % checks if u is a s.t. pairp u and spp car u; symbolic procedure sfp2 u; %new % checks if u if a s.f. % sfp seems to be ill defined pairp u and stp car u; symbolic procedure tstp u; %new % checks if u is a "true" standard term, i.e. a product term stp u and (car !*f2a !*t2f u neq 'plus); symbolic procedure !*!*a2f u; %new %converts u without call of subs2 begin scalar flg,res; flg := subfg!*; subfg!* := nil; res := !*a2f u; subfg!* := flg; return res end; symbolic procedure !*!*a2q u; %new %converts an algebraic expression into a s.q. using !*!*a2f if car u eq 'quotient then !*!*a2f cadr u . !*!*a2f caddr u else !*f2q !*!*a2f u; symbolic procedure !*a2q u; %new %converts an algebraic expression into a s.q. using !*a2f if (not atom u and car u eq 'quotient) then !*a2f cadr u . !*a2f caddr u else !*f2q !*a2f u; symbolic procedure atsoc2(u,v); % same as atsoc but looks for the caar part begin scalar res; for each x in v do if (not atom car x and caar x eq u) then res:= x; return res end; symbolic procedure sublist(u,v); % u and v are lists of sp % checks if all elements of u are included in v in the right order % return a sublist of containing the elements of u + the rest of v begin scalar x,z,y,w,reslist,n,u1; if not (listp u and listp v) then rederr " invalid arguments to sublist"; %initialization if null u or null v or not (V:= member(car u,v)) then return; a : if null u then return nconc(reslist,append(u1,v)); z:= v; x := car u; u := cdr u; if not (v:= member(x,z)) then return; v := cdr v; n:= length(z) - length(v) - 1; z := for k:= 1 : n collect nth(z,k); trwrite(sublist,"z= ",z," v= ",v," x= ",x); a0: if null z then << u1 := nconc(u1,list(x)); go to a; >>; w := car z; z := cdr z; if noncommuting!_splist(w,u1) then go to a1 else reslist := nconc(reslist,list(w)); go to a0; a1: z := reverse (w . z); if noncommutingsp(car z,x) then return; v := (car z) . v; z := reverse cdr z; go to a0; end; symbolic procedure deleteall(x,u); %2.1 % deletes all occurrences of x in u begin scalar y,res; a: if null u then return res; y:= car u; u := cdr u; if not (y = x) then res:= nconc(res,list(y)); go to a end; symbolic procedure deletemult(x,u); %2.1 % deletes multiples occurences of x in u % keeping only one left begin scalar y,n; if null (y:= cdr member(x,u)) then return u; n:=length(u)-length(y); return nconc(for k:=1 :n collect nth(u,k),deleteall(x,y)); end; symbolic procedure deletemult!* u; % deletes all multiple occurences of elements in u begin scalar x; if null u then return u; x:=list(car u); u := cdr u; for each y in u do if not member(y,x) then nconc(x,list(y)); return x end; symbolic procedure listofvarnames u; %new % u is a list of s.p. % returns list of vars in u % we keep nil as placeholder for numbers in u if not listp u then rederr "invalid argument to listofvarnames" else for each x in u collect if domain!*p x then (nil . 'free) else if atom x then (nil . 'free) else if idp car x then ((car x) . 'free) else if idp caar x then ((caar x) . 'free); symbolic procedure replsublist(u,v,w); %new % v and w are p-lists % u is anything % replaces the sublist v in w by u begin scalar n,x,res; if not (x:= sublist(v,w)) then return w; n:= length(w)-length(x); % trwrite "n= ",n," x= ",x; % u := if listp u then u else list(u); % trwrite "u= ",u,listp u; res := if zerop n then nil else for k:= 1 :n collect nth(w,k); res := if null res then u else nconc(res,u); % trwrite "res= ",res; return if (length(v) = length(x)) then res else nconc(res,pnth(x,length(v)+1)) end; symbolic procedure locate!_n(x,lst,n); % returns the position of the n-th occurence of x in lst % nil if not succesful begin scalar n2,lst2,ntot; if null lst then return nil; lst2 := lst; ntot:= 0; a: if n = 0 then return ntot; n2:= locate(x,lst2); % trwrite "n2=",n2," lst2= ",lst2; if null n2 then return nil; lst2 := cdr pnth(lst2,n2); ntot := ntot+n2; n:= n-1; go to a; end; symbolic procedure term2listpows u; %new % u is a s.t. containing only products % return a list of the s.p. of u begin trwrite(term2listpows,"u= ",u); return if null u then u else if atom u then list u else if domain!*p cdr u then car u . list cdr u else car u . term2listpows cadr u; end; symbolic procedure listprod2term u; %new % u is a list of product terms (numbers,s.p.,s.t.,s.f.) % value is the s.q. obtained by multiplying all the terms together begin scalar x,res; if not listp u then rederr "invalid argument to listprod2term"; if null u then return u; res:= car u; res := if domain!*p res then !*d2q res else if spp res then !*p2q res else if stp res then !*t2q res else if sfp2 res then res . 1 else res; % trwrite "res= ",res; u :=cdr u; a: if null u then return res; x := car u; x := if domain!*p x then !*d2q x else if spp x then !*p2q x else if stp x then !*t2q x else if sfp2 x then x . 1 else x; u := cdr u; res := multsq(res,x); go to a; end; % this routine gives the position of an object in a list. the first % object is numbered 1. returns nil if the object can't be found. symbolic procedure locate(u,v); if not member(u,v) then nil else if u=car v then 1 else 1+locate(u,cdr v); global '(domainlist!*); symbolic procedure domain!*p u; % this is a much more precise domain checker than domainp null u or numberp u or (not atom u and memq(car u,domainlist!*)); %------------------------------------------------% % new defintions of noncom and testing functions % %------------------------------------------------% % clear previous definitions of noncom remflag('(noncom),'flagop); remprop('noncom,'stat); symbolic procedure noncomp!* u; % changed % u is a kernel checks for noncom flag if atom u then flagp(u,'noncom) else flagpcar(u,'noncom); symbolic procedure noncom u; %new begin scalar y,liste; if not listp u then rederr(u, "invalid argument to noncom"); for each x in u do << if not idp x then rederr(x, "invalid argument to noncom"); flag(list(x),'noncom); liste:=get(x,'noncommutes); y := delete(x,u); put(x,'noncommutes,deletemult!* nconc(liste,y)); % the following is needed for the physop package added 2.1 140891 mw if (get(x,'rtype) = 'physop) then << flag(list(adjp x),'noncom); liste:=get(adjp x,'noncommutes); y := delete(adjp x,for each j in u collect adjp j); put(adjp x,'noncommutes,deletemult!* nconc(liste,y)); flag(list(invp x),'noncom); liste:=get(invp x,'noncommutes); y := delete(invp x,for each j in u collect invp j); put(invp x,'noncommutes,deletemult!* nconc(liste,y)); >>; >>; return nil end; deflist('((noncom rlis)),'stat); symbolic procedure noncommuting(u,v); % modifed 2.1 140891 mw % u and v are two kernels % checks for noncommuting begin scalar list,res; u := if atom u then u else car u; v := if atom v then v else car v; if not (noncomp!* u and noncomp!* v) then nil else << list :=get(u,'noncommutes); res:=member(v,list); >>; return res end; symbolic procedure noncommutingterm u; %new % u is a standard term % checks if there are some noncommuting products in u begin scalar x,y; if null u or domain!*p u or spp u then return nil; x := tvar u; % <-- term variable u := cdr u; % <-- tc (s.f.) a: if null u or domain!*p u then return nil; y := car u; % <-- lt if noncommutingf(x,list(y)) or noncommutingterm y then return t; u := cdr u; go to a end; symbolic procedure noncommutingf(x,u); % new % x is a kernel, u is a standard form % checks for noncommuting if domain!*p u then nil else noncommuting(x, mvar u) or noncommutingf(x, lc u) or noncommutingf(x, red u); symbolic procedure noncommutingsp(u,v); % u and v are sp or numbers if null u or null v or numberp u or numberp v then nil else noncommuting(car u,car v); symbolic procedure noncommuting!_splist(u,v); % u is a sp, v is a list of sp % checks if u commutes with all elements of v if null v or null u then nil else noncommutingsp(u,car v) or noncommuting!_splist(u,cdr v); %----------------------------------% % modified multiplication routine % %----------------------------------% symbolic procedure multf(u,v); % changed %u and v are standard forms. %value is standard form for u*v; begin scalar ncmp,x,y; a: if null u or null v then return nil else if u=1 then return v % onep else if v=1 then return u % onep else if domainp u then return multd(u,v) else if domainp v then return multd(v,u) else if not(!*exp or ncmp!* or wtl!* or x) then <<u := mkprod u; v := mkprod v; x := t; go to a>>; x := mvar u; y := mvar v; % the following line has been replaced % if (ncmp:= noncomp!* y) and noncomp!* x then return multfnc(u,v) if noncommuting(x,y) then return multfnc(u,v) % we have to put this clause here to prevent evaluation in case % of equal main vars else if noncommutingf(y, lc u) or (ordop(x,y) and (x neq y)) then << x := multf(lc u,v); y := multf(red u,v); return if null x then y else lpow u .* x .+ y>> else if x eq y % two forms have the same mvars then << x := mkspm(x,ldeg u+ldeg v); y := addf(multf(red u,v),multf(!*t2f lt u,red v)); return if null x or null(u := multf(lc u,lc v)) then <<!*asymp!* := t; y>> else if x=1 then addf(u,y) else if null !*mcd then addf(!*t2f(x .* u),y) else x .* u .+ y>>; x := multf(u,lc v); y := multf(u,red v); return if null x then y else lpow v .* x .+ y end; %--------------------------------------------% % procedures for ordering of expressions % %--------------------------------------------% symbolic procedure ordp(u,v); % modified %returns true if u ordered ahead or equal to v, nil otherwise. %an expression with more structure at a given level is ordered % behind (and not ahead) of one with less; % ordering of numbers is left as default if null u then t else if null v then nil else if atom u then if atom v then if numberp u then if numberp v then not u < v else t else if numberp v then nil else orderp(u,v) else t else if atom v then nil else if car u=car v then ordp(cdr u,cdr v) else ordp(car u,car v); symbolic procedure reordop(u,v); %changed % modilfied so that every commuting op is ordered ahead % of every noncommuting op if noncommuting(u,v) then t else if noncomp!* u and not noncomp!* v then nil else if noncomp!* v and not noncomp!* u then t else ordop(u,v); %--------------------------------------------------% % procedures for handling noncommutative % % terms in pattern matching % %--------------------------------------------------% % we have to modify subs3f1 since the handling of noncom mvars % in subs3t is not correct so we must prevent the system from % calling this procedure symbolic procedure subs3f1(u,l,bool); %modified %u is a standard form. %l is a list of possible matches. %bool is a boolean variable which is true if we are at top level. %value is a standard quotient with all product substitutions made; begin scalar x,z; z := nil ./ 1; a: if null u then return z else if domainp u then return addsq(z,u ./ 1) else if bool and domainp lc u then go to c; % the following line has been changed 2.1 x := if !*mymatch then !*subs3tnc(lt u,l) else subs3t(lt u,l); % x := if noncommutingterm lt u then !*subs3tnc(lt u,l) % else subs3t(lt u,l); if not bool %not top level; or not mchfg!* then go to b; %no replacement made; mchfg!* := nil; if numr x = u and denr x = 1 then <<x := u ./ 1; go to b>> % also shows no replacement made (sometimes true with non % commuting expressions) else if null !*resubs then go to b else if !*sub2 or powlis1!* then x := subs2q x; %make another pass; x := subs3q x; b: z := addsq(z,x); u := cdr u; go to a; c: x := list lt u ./ 1; go to b end; symbolic procedure !*subs3tnc(u,v); %new 2.2 % header procedure for subs3tnc % u is a standard term, v a list of matching templates % call subs3tnc on every product term of u and return a s.q. % if u not standard term begin scalar x,y,res,mchfg; trwrite('subs3tnc,"before mchfg!*= ",mchfg!*); if domain!*p u then return !*d2q u; if kernelp u then return !*k2q u; if spp u then return !*p2q u; y := zerleg u; % transform u in a list of true s.t. trwrite('!*subs3tnc," y= ",y); res := (nil . 1); a: if null y then << mchfg!* := mchfg; return res >>; x := car y; y := cdr y; res := addsq(res,subs3tnc(x,v)); if mchfg!* then <<mchfg := mchfg!*; mchfg!* := nil >>; trwrite('!*subs3tnc,"res= ",res); go to a end; symbolic procedure zerleg u; % new 2.2 % u is a s. t. % value is a list of termlists % each termlist contains the s. p. of a true s. t. of u begin scalar x,res; if null u then return u; if domain!*p u then return list u; x:= car u; % <-- lpow u := cdr u; % <-- lc if null u then return list(list(x)); if domain!*p u then return list(list(x,u)); res := zerleg(car u); res := for each j in res collect (x . j); if null cdr u then return res else return append(res,zerleg(x . cdr u)); end; symbolic procedure subs3tnc(termlist,v); %new % new version including more general templates % u is a list of s.p. from a product term in s. t. form (2.2), % v a list of matching templates. % value is the s.t. modified by relevant substitutions % (eg a s.q. in general case) begin scalar termlist2,templ,temp,tempsp,tempvar,freetemp,rhs, lhs,bool,boolp,matchinglist,x,y,z,z1,w,w1,termlist3,na,ka,n,k, prevterml2,nabs; % added 2.2 % return trivial cases removed 2.2 % if domain!*p u then return !*d2q u; % build a list of s.p. in u % termlist := term2listpows u; %this line replaced by argument 2.2 % trwrite(subs3tnc, "termlist= ",termlist); mchfg!* := nil; % this is the main loop scanning each template % terminating if no match found a: if null v then return listprod2term termlist; %changed 2.2 % these are the variable names in termlist moved here 2.2 termlist2:= listofvarnames termlist; % select a template templ := car v; v := cdr v; % trwrite(subs3tnc," templ= ",templ," v= ",v); % rhs is an algebraic expression rhs := nth(templ,3); % boolean expression to be satisfied by the matching args bool := cdadr templ; % flag to indicate if exact power matching required boolp := caadr templ; trwrite(subs3tnc, "bool= ",bool," boolp= ",boolp); % lhs of templ is already a list of s.p. lhs := car templ; temp := nil; freetemp := nil; % initialization % first we separate the lhs in a list of free and of nonfree % variables for each x in reverse lhs do if memq(car x,frlis!*) then freetemp := x . freetemp else temp := x . temp; lhs := nil; % will be rebuilt later on trwrite(subs3tnc, "temp= ",temp,"freetemp= ",freetemp); if null temp then go to b; % we allow nonexact power matching only in the case of 2 sp in lhs boolp := if length(temp) = 2 then boolp else t; k := 1; % counter for number of terms in lhs na:= 1; nabs := 0; % added 2.2 z1 := nil; matchinglist := nil; a1: if (k > length(temp)) then go to b; aa: if (k < na) then go to a; tempsp := nth(temp,k); tempvar := if idp car tempsp then car tempsp else caar tempsp; a2: n:= locate((tempvar . 'free),termlist2); if numberp n then go to ab; k := k-1; z1 := nil; lhs := if null lhs then lhs else cdr lhs; % 2.2 two lines added 210891 mw termlist2 := prevterml2; nabs := length(termlist) - length(termlist2); % update nabs go to aa; ab: % mark tempvar as being used in the pattern matching process termlist2 :=nconc(for k:=1 :(n-1) collect nth(termlist2,k), ((tempvar . 'used) . pnth(termlist2,n+1))); % trwrite(subs3tnc, "termlist2= ",termlist2); x:= nth(termlist,n+nabs); %2.2 modified to get the absolute position z:= mtchp1!*(x,tempsp,boolp,bool,z1); if null cdr z then go to a2; if car z then << if not sublist(car z ,matchinglist) then matchinglist:= nconc(matchinglist,car z); trwrite(subs3tnc, "matchinglist= ",matchinglist); % do the substitutions of car z in temp and bool for each y in car z do << bool := subst(cdr y,car y,bool); temp := subst(cdr y,car y,temp) >>; >>; lhs := x . lhs; trwrite(subs3tnc, "lhs= ",lhs); z1:= cdr z; na:= k; k:= k + 1; % 2.2: 3 lines added 210891 mw prevterml2 := termlist2; termlist2 := pnth!*(termlist2,n+1); nabs := nabs + n; %update the absolute position counter go to a1; b: if not sublist(car z1,matchinglist) then matchinglist:= nconc(matchinglist,car z1); % special hack for nonexact power matching if (length(lhs) = 2) then << x := cadr lhs; % this is the first term ! y := nth(temp,1); if ((na:= cdr y) neq (ka := cdr x)) then << termlist := replsublist(list(car x .** (ka - na), car x .** na), list(car x .** ka),termlist); w := list(car x . na); >> else w:= list(x); x:= car lhs; % this is the second term y := nth(temp,2); if (na:= cdr y) neq (ka := cdr x) then << termlist := replsublist(list(car x .** na, car x .** (ka - na)), list(car x .** ka),termlist); lhs := (car x . na) . w; >> else lhs := x . w; >>; % from here on in principle all the terms in lhs are matched lhs := reverse lhs; % cross check if null (termlist3 := sublist(lhs,termlist)) then go to a; n := length(termlist)-length(termlist3); % trwrite(subs3tnc, "n= ",n); % rebuild the termlist after rearrangement termlist := nconc(for k := 1 : n collect nth(termlist,k), termlist3); na := length(freetemp); if (na = 0) then go to d; freetemp := reverse freetemp; % recalculation of n is necessary because lhs do not sit % in front of termlist3 n:= length(termlist) - length(member(car lhs,termlist)); % match the free variable(s) to be placed in front if (n < na) then go to a; % take all the terms in front in this case if (na = 1) and (cdar freetemp = 1) then << lhs := termlist; matchinglist:= nconc(matchinglist,list(caar freetemp . !*q2a listprod2term nconc( for k:=1 :n collect nth(termlist,k), for k:= (length(lhs)+1) : length(termlist3) collect nth(termlist3,k)))); >> else for k:=1 :na do << x := nth(termlist,n-k+1); y := nth(freetemp,k); z:= mtchp1(x,y,boolp,bool); if not sublist(car z ,matchinglist) then matchinglist:= nconc(matchinglist,car z); for each w in car z do y:= subst(cdr w,car w,y); lhs := y . lhs; if (na:= cdr y) neq (ka := cdr x) then << termlist := replsublist(list(car x .** (ka - na), car x .** na),list(car x .** ka),termlist); n:= n+1; >> >>; d: trwrite(subs3tnc,"lhs= ",lhs); trwrite(susb3tnc," termlist= ",termlist); % trwrite(subs3tnc,"matchinglist= ",matchinglist); % replace the free variables in the rhs for each x in matchinglist do rhs:= subst(cdr x, car x,rhs); % trwrite(subs3tnc," rhs= ",rhs); % and finally we replace the lhs in u by the rhs % for this we have to replace in the termlist the s.p. of lhs by % the rhs converted to a standard quotient rhs := list(simp rhs); trwrite(subs3tnc," rhs= ",rhs); termlist:= replsublist(rhs,lhs,termlist); trwrite(subs3tnc, "resulting termlist = ",termlist); mchfg!* := t; return listprod2term termlist end; symbolic procedure mtchp1!*(u,v,boolp,bool,z); % u is a sp, v is a sp to be matched against x % boolp is a flg (t if exact power matching required) % bool is a boolean expr to be satisfied during matching % z is a list of possible matchings for the free variables in y % returns a list of matching pair lists first is that element of z % which leads to a succesful matching or nil begin scalar temp1,bool1,x,z1; if null z then return nconc(list(nil),mtchp2(u,v,boolp,bool)); a: if null z then return list(nil); x:= car z; z:= cdr z; % trwrite "x= ",x," z= ",z; temp1:= v; bool1 := bool; for each w in x do << temp1:= subst(cdr w,car w, temp1); bool1 := subst(cdr w,car w,bool1); >>; if (z1:=mtchp2(u,temp1,boolp,bool1)) then return x . z1; go to a; end; symbolic procedure mtchp2(u,v,boolp,bool); % does the same job as mtchp1 but more accurately % since mtchp1 does not check bool at all begin scalar z,x,reslist,bool1,bool2; z := reverse mtchp1(u,v,boolp,bool); if (bool = t) then return z; a: if null z then return reslist; x := car z; z := cdr z; bool1 := bool; for each w in x do bool1 := subst(cdr w,car w,bool1); bool2:= bool1; % trick used here to check for remaining free variables in bool for each w in frlis!* do bool2:=subst(nil,w, bool2); trwrite(mtchp2, "bool1= ",bool1," bool2= ",bool2); if ((bool2 = bool1) and null eval bool1) then return nil else reslist := x . reslist; go to a end; endmodule; end;