Artifact e1990fff108af7234cb6645c4cea3c216ad9a523e95fc7a61ab63220ffe89de9:
- Executable file
r37/packages/defint/defintc.red
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 7230) [annotate] [blame] [check-ins using] [more...]
- Executable file
r38/packages/defint/defintc.red
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 7230) [annotate] [blame] [check-ins using]
module defintc; fluid '(mellin!-transforms!* mellin!-coefficients!*); symbolic (mellin!-transforms!* :=mkvect(200))$ symbolic putv(mellin!-transforms!*,0,'(1 . 1)); % undefined case symbolic putv(mellin!-transforms!*,1,'(() (1 0 0 1) () (nil) 1 x)); % trigonometric functions symbolic putv(mellin!-transforms!*,2,' (() (1 0 0 2) () ((quotient 1 2) nil) (sqrt pi) (quotient (expt x 2) 4))); symbolic putv(mellin!-transforms!*,25,' (() (1 0 0 2) () ((quotient 1 2) nil) (minus (sqrt pi)) (quotient (expt x 2) 4))); symbolic putv(mellin!-transforms!*,3,' (() (1 0 0 2) () (nil (quotient 1 2)) (sqrt pi) (quotient (expt x 2) 4))); symbolic putv(mellin!-transforms!*,7,' (() (2 0 2 2) (1 1) (nil (quotient 1 2)) (quotient (sqrt pi) 2) (expt x 2))); symbolic putv(mellin!-transforms!*,8,' (() (0 2 2 2) ((quotient 1 2) 1) (nil nil) (quotient (sqrt pi) 2) (expt x 2))); symbolic putv(mellin!-transforms!*,9,' (() (1 2 2 2) ((quotient 1 2) 1) ((quotient 1 2) nil) (quotient 1 2) (expt x 2))); % hyperbolic functions symbolic putv(mellin!-transforms!*,10,' (() (1 0 1 3) (1) ((quotient 1 2) 1 nil) (expt pi (quotient 3 2)) (quotient (expt x 2) 4))); symbolic putv(mellin!-transforms!*,11,' (() (1 0 1 3) ((quotient 1 2)) (nil (quotient 1 2) (quotient 1 2)) (expt pi (quotient 3 2)) (quotient (expt x 2) 4))); % the Heavisides symbolic putv(mellin!-transforms!*,30,'(() (1 0 1 1) (1) (nil) 1 x)); symbolic putv(mellin!-transforms!*,31,'(() (0 1 1 1) (1) (nil) 1 x)); symbolic putv(mellin!-transforms!*,32,' (() (2 0 2 2) (1 1) (nil nil) -1 x)); symbolic putv(mellin!-transforms!*,33,' (() (0 2 2 2) (1 1) (nil nil) 1 x)); symbolic putv(mellin!-transforms!*,34,' (() (1 2 2 2) (1 1) (1 nil) 1 x)); symbolic putv(mellin!-transforms!*,35,' (() (2 1 2 2) (nil 1) (nil nil) 1 x)); % exponential integral symbolic putv(mellin!-transforms!*,36,' (() (2 0 1 2) (1) (nil nil) -1 x)); % sin integral symbolic putv(mellin!-transforms!*,37,' (() (1 1 1 3) (1) ((quotient 1 2) nil nil) (quotient (sqrt pi) 2) (quotient (expt x 2) 4))); % cos integral symbolic putv(mellin!-transforms!*,38,' (() (2 0 1 3) (1) (nil nil (quotient 1 2)) (quotient (sqrt pi) -2) (quotient (expt x 2) 4))); % sinh integral symbolic putv(mellin!-transforms!*,39,' (() (1 1 2 4) (1 nil) ((quotient 1 2) nil nil nil) (quotient (expt pi (quotient 3 2)) -2) (quotient (expt x 2) 4))); % error functions symbolic putv(mellin!-transforms!*,41,' (() (1 1 1 2) (1) ((quotient 1 2) nil) (quotient 1 (sqrt pi)) (expt x 2))); symbolic putv(mellin!-transforms!*,42,' (() (2 0 1 2) (1) (nil (quotient 1 2)) (quotient 1 (sqrt pi)) (expt x 2))); % Fresnel integrals symbolic putv(mellin!-transforms!*,43,' (() (1 1 1 3) (1) ((quotient 3 4) nil (quotient 1 4)) (quotient 1 2) (quotient (expt x 2) 4))); symbolic putv(mellin!-transforms!*,44,' (() (1 1 1 3) (1) ((quotient 1 4) nil (quotient 3 4)) (quotient 1 2) (quotient (expt x 2) 4))); % gamma function symbolic putv(mellin!-transforms!*,45,' ((n) (1 1 1 2) (1) (n nil) 1 x)); % Bessel functions symbolic putv(mellin!-transforms!*,50,' ((n) (1 0 0 2) () ((quotient n 2) (minus (quotient n 2))) 1 (quotient (expt x 2) 4))); symbolic putv(mellin!-transforms!*,51,' ((n) (2 0 1 3) ((quotient (minus (plus n 1)) 2)) ((quotient n 2) (minus (quotient n 2)) (quotient (minus (plus n 1)) 2)) 1 (quotient (expt x 2) 4))); symbolic putv(mellin!-transforms!*,52,' ((n) (1 0 1 3) ((plus (quotient 1 2) (quotient n 2))) ((quotient n 2) (minus (quotient n 2)) (plus (quotient 1 2) (quotient n 2))) pi (quotient (expt x 2) 4))); symbolic putv(mellin!-transforms!*,53,' ((n) (2 0 0 2) () ((quotient n 2) (minus (quotient n 2))) (quotient 1 2) (quotient (expt x 2) 4))); % struve functions symbolic putv(mellin!-transforms!*,54,' ((n) (1 1 1 3) ((quotient (plus n 1) 2)) ((quotient (plus n 1) 2) (minus (quotient n 2)) (quotient n 2)) 1 (quotient (expt x 2) 4))); symbolic putv(mellin!-transforms!*,55,' ((n) (1 1 2 4) ((quotient (plus n 1) 2) nil) ((quotient (plus n 1) 2) nil (quotient n 2) (minus (quotient n 2))) (times (minus pi) (sec (times (quotient (minus n) 2) pi))) (quotient (expt x 2) 4))); % legendre polynomials symbolic putv(mellin!-transforms!*,56,' ((n) (2 0 2 2) ((minus n) (plus n 1)) (nil nil) 1 (quotient (plus x 1) 2))); symbolic putv(mellin!-transforms!*,57,' ((n) (0 2 2 2) (1 1) ((minus n) (plus n 1)) 1 (quotient (plus x 1) 2))); % chebyshev polymomials symbolic putv(mellin!-transforms!*,58,' ((n) (2 0 2 2) ((difference (quotient 1 2) n) (plus (quotient 1 2) n)) (nil (quotient 1 2)) (sqrt pi) (quotient (plus x 1) 2))); symbolic putv(mellin!-transforms!*,59,' ((n) (0 2 2 2) (nil (quotient 1 2)) (n (minus n)) (sqrt pi) (quotient (plus x 1) 2))); symbolic putv(mellin!-transforms!*,60,' ((n) (2 0 2 2) ((plus (quotient 3 2) n) (difference (minus (quotient 1 2)) n)) (nil (quotient 1 2)) (quotient (plus n 1) (times 2 (sqrt pi))) (quotient (plus x 1) 2))); symbolic putv(mellin!-transforms!*,61,' ((n) (0 2 2 2) ((quotient 3 2) 2) ((minus n) (plus n 2)) (quotient (plus n 1) (times 2 (sqrt pi))) (quotient (plus x 1) 2))); % hermite polynomials symbolic putv(mellin!-transforms!*,62,' ((n) (1 0 1 2) (plus (quotient n 2) 1) ((difference (quotient n 2) (quotient n 2)) (difference (quotient 1 2) (difference (quotient n 2) (quotient n 2)))) (times (expt (minus 1) (quotient n 2)) (sqrt pi) (factorial n)) (expt x 2))); % laguerre polynomials symbolic putv(mellin!-transforms!*,63,' ((n l) (1 0 1 2) ((plus n 1)) (0 (minus l)) (gamma (plus l n 1)) x)); % gegenbauer polynomials symbolic putv(mellin!-transforms!*,64,' ((n l) (2 0 2 2) ((plus l n (quotient 1 2)) (difference (quotient 1 2) (quotient 1 n))) (0 (difference (quotient 1 2) l)) (quotient (times 2 l (gamma (plus l (quotient 1 2)))) (factorial n)) (quotient (plus x 1) 2))); symbolic putv(mellin!-transforms!*,65,' ((n l) (0 2 2 2) ((plus l (quotient 1 2)) (times 2 l)) ((minus n) (plus (times 2 l) n)) (quotient (times 2 l (gamma (plus l (quotient 1 2)))) (factorial n)) (quotient (plus x 1) 2))); % jacobi polynomials symbolic putv(mellin!-transforms!*,66,' ((n r s) (2 0 2 2) ((plus r n 1) (difference (minus s) n)) (0 (minus s)) (quotient (gamma (plus r n 1)) (factorial n)) (quotient (plus x 1) 2))); symbolic putv(mellin!-transforms!*,67,' ((n r s) (0 2 2 2) ((plus r 1) (plus r s 1)) ((minus n) (plus r s n 1)) (quotient (gamma (plus r n 1)) (factorial n)) (quotient (plus x 1) 2))); symbolic (mellin!-coefficients!* :=mkvect(200))$ endmodule; end;