Artifact da88726775bfe81c54f579366baadc541bdb0e3ce9fc037b19e47af312530f62:
- Executable file
r37/packages/redlog/acfsfqe.red
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 9965) [annotate] [blame] [check-ins using] [more...]
% ---------------------------------------------------------------------- % $Id: acfsfqe.red,v 1.10 1999/04/12 09:25:59 sturm Exp $ % ---------------------------------------------------------------------- % Copyright (c) 1995-1999 Andreas Dolzmann and Thomas Sturm % ---------------------------------------------------------------------- % $Log: acfsfqe.red,v $ % Revision 1.10 1999/04/12 09:25:59 sturm % Updated comments for exported procedures. % % Revision 1.9 1999/04/11 11:35:30 dolzmann % Use the new standard form interface cgb_cgbf which provides also a % wrapper to the gb package. % % Revision 1.8 1999/04/11 09:53:24 dolzmann % Adapted the procedure acfsf_qeblk2 to the new SF interface of the cgb % package. % Procedure acfsf_qefl uses dip's instead of vdp's. % % Revision 1.7 1999/04/04 19:03:23 sturm % Removed acfsf_cgbf and use new interface cgb_cgbf provided by cgb. % Encapsulated sfto_groebnerf call into torder local setting. % % Revision 1.6 1999/03/23 08:21:01 dolzmann % Changed copyright information. % Corrected comments for extracting with exc. % % Revision 1.5 1999/03/21 13:33:45 dolzmann % Added implementation of the service rlthsimpl. % Corrected comments. % % Revision 1.4 1997/11/14 05:37:25 dolzmann % Fixed a bug acfsf_qe1. % % Revision 1.3 1997/10/02 13:49:51 dolzmann % In procedure acfsf_qe1: Remove atomic formulas containing bound variables % from the theory. % % Revision 1.2 1997/10/02 13:14:41 sturm % The CGB switches have been renamed from gcgb... to cgb... % % Revision 1.1 1997/10/01 11:13:06 dolzmann % Initial check-in. % % ---------------------------------------------------------------------- lisp << fluid '(acfsf_qe_rcsid!* acfsf_qe_copyright!*); acfsf_qe_rcsid!* := "$Id: acfsfqe.red,v 1.10 1999/04/12 09:25:59 sturm Exp $"; acfsf_qe_copyright!* := "Copyright (c) 1995-1999 A. Dolzmann and T. Sturm" >>; module acfsfqe; % Algebraically closed field standard form quantifier elimination. % Submodule of [acfsf]. procedure acfsf_gqe(f,theo,xbvl); % Algebraically closed field generic quantifier elimination. [f] is % a formula; [theo] is a theory; [xbvl] is a list of variables. begin scalar !*cgbgen,!*cgbreal; !*cgbgen := T; return acfsf_qe1(f,theo,xbvl) end; procedure acfsf_qe(f,theo); % Algebraically closed field quantifier elimination. [f] is a % formula; [theo] is a theory. Returns a quantifier-free formula % equivalent to [f] wrt. [theo]. begin scalar !*cgbgen,!*cgbreal; !*cgbgen := nil; return acfsf_qe1(f,theo,nil) end; procedure acfsf_qe1(f,theo,xbvl); % Algebraically closed field standard form quantifier elimination. % [f] is a formula; [theo] is a theory; [xbvl] is a list of % variables. Returns a formula equivalent to [f]. begin scalar w,qblkl,qff,bvl; f := rl_simpl(rl_pnf f,theo,-1); w := cl_splt f; qblkl := car w; if null qblkl then return f; qff := cadr w; bvl := caddr w; theo := for each atf in theo join if null intersection(rl_varlat atf,bvl) then {atf}; xbvl := nconc(bvl,xbvl); if !*rlqegen then if cdr qblkl then rederr "acfsf_qe: gqe supported only for one block of quantifiers" else if xbvl then rederr "acfsf_qe: does not accept a xbvl"; for each qblk in qblkl do qff := acfsf_qeblk(qblk,qff,theo,xbvl); return qff end; procedure acfsf_qeblk(qblk,f,theo,bvl); % Algebraically closed field standard form quantifier elimination. % [qblk] is a QBLK; [f] is a quantifier-free formula; [theo] is a % theory; [bvl] is a list of variables. Returns a formula % equivalent to [f]. if car qblk eq 'ex then acfsf_qeblk1(cdr qblk,f,theo,bvl) else cl_nnfnot acfsf_qeblk1(cdr qblk,cl_nnfnot f,theo,bvl); procedure acfsf_qeblk1(vl,f,theo,bvl); % Algebraically closed field standard form quantifier elimination. % [vl] is a list of variables; [f] is a conjunction of atomic % formulas, an atomic formula or a truth value; [theo] is a theory; % [bvl] is a list of variables. Returns a formula. begin scalar w,fl; f := rl_dnf f; fl := if rl_op f eq 'or then rl_argn f else {f}; w := for each c in fl collect acfsf_qeblk2(vl,c,theo,bvl); return rl_simpl(rl_smkn('or,reversip w),theo,-1) end; procedure acfsf_qeblk2(vl,f,theo,bvl); % Algebraically closed field standard form quantifier elimination. % [qblkl] is a list of QBLK's; [f] is a conjunction of atomic % formulas, an atomic formula, or a truth value; [theo] is a % theory; [bvl] is a list of variables. Returns a formula which is % equivalent to ex(vl,f) wrt. [theo]. begin scalar w,atl,eqtl,itheo,cgb; if rl_tvalp f then return f; atl := cl_atl1 f; w := acfsf_spltcj(atl,vl); atl := car w; itheo := cdr w; w := acfsf_eqtl atl; eqtl := car w; vl := nconc(cdr w,vl); cgb := cgb_cgbf(eqtl,vl,'revgradlex,nil) where !*gbverbose=nil; return rl_smkn('and,acfsf_qefl(cgb,vl) . itheo) end; procedure acfsf_spltcj(atl,vl); % Algebraically closed field standard form quantifier elimination % split conjunction. [atl] is a list of atomic formulas considered % conjunctive; [vl] is a list of variables. Returns a pair $(\alpha % . \beta)$, where $\alpha$ and $\beta$ are list of atomic % formulas. The union of $\alpha$ and $beta$ is equal to [atl]. No % variables from [vl] occurs in the atomic formulas in $\beta$. begin scalar natl,itheo; for each x in atl do if intersection(acfsf_varlat x,vl) then natl := x . natl else itheo := x . itheo; return natl . itheo end; procedure acfsf_eqtl(atl); % Algebraically closed field standard form equation term list. % [atl] is a list of atomic formulas. Returns a pair $(\lambda . % \tau)$, where $\lambda$ is a list of terms considered as % equations and $\tau$ is a list of variables. $\bigwedge([atl])$ % is equivalent to $\exists(\tau,\lambda)$. begin scalar eqtl,neqtl,w; for each at in atl do if acfsf_op at eq 'equal then eqtl := acfsf_arg2l at . eqtl else neqtl := acfsf_arg2l at . neqtl; w := acfsf_rmneqtl neqtl; eqtl := nconc(car w,eqtl); return eqtl . cdr w end; procedure acfsf_rmneqtl(neqtl); % Algebraically closed field standard form remove neq term list. % [neqtl] is a list of terms considered as inequalities. Returns a % pair $(\lambda . \tau)$, where $\lambda$ is a list of terms % considered as equations and $\tau$ is a list of variables. % $\bigwedge([neqtl])$ is equivalent to $\exists(\tau,\lambda)$. begin scalar p,v; if null neqtl then return nil . nil; p := 1; for each u in neqtl do p := multf(p,u); v := acfsf_tagvar(); p := addf(multf(p,numr simp v),negf 1); return {p} . {v} end; procedure acfsf_tagvar(); % Algebraically closed field standard form tag variable. Returns a % tag variable. intern gensym(); procedure acfsf_qefl(ul,vl); % Algebraically closed field standard form quantifier elimination % formula from form-list. [ul] is a list of SF's; [vl] is a list of % variables. Returns a quantifier-free formula. begin scalar fl,oenv; if null ul then return 'true; oenv := dip_init(vl,'revgradlex,nil); fl := for each u in ul collect acfsf_qefl1 dip_f2dip u; dip_cleanup(oenv); return rl_smkn('and,fl) end; procedure acfsf_qefl1(p); % Algebraically closed field standard form quantifier elimination % formula from form subroutine. [p] is a DIP. Returns a % quantifier-free formula. begin scalar p,fl,cl,lev,lc; while p do << cl := dip_lbc p . cl; lev := dip_evlmon p; p := dip_mred p; >>; if ev_zero!? lev then << lc := car cl; cl := cdr cl >> else lc := simp 0; fl := for each c in cl collect acfsf_0mk2('neq,acfsf_bc2f c); fl := acfsf_0mk2('equal,acfsf_bc2f lc) . fl; return rl_smkn('or,fl) end; procedure acfsf_bc2f(c); % Algebraically closed field standard form base coefficient to % form. [c] is a base coefficient as defined in dipoly. Returns a % SF. numr bc_2sq c; procedure acfsf_thsimpl(atl); % Algebraically closed field theory simplification. [atl] is a % theory. Returns an equivalent theory. The returned theory is % simpler than the original one. begin scalar !*rlsiexpla,!*rlsipo; !*rlsiexpla := T; return sort(acfsf_thregen cl_simpl(rl_smkn('and,atl),nil,-1),'rl_ordatp) end; procedure acfsf_thregen(f); % Algebraically closed field standard form re-generate theory. [f] % is a formula. Returns a possibly empty list of atomic formulas % equivalent to [f] or the list [{'false}] if [f] is recognized as % a contradiction. begin scalar op; op := rl_op f; if op = 'and then return for each x in rl_argn f collect acfsf_thregen!-or x; if op = 'or then return {acfsf_thregen!-or f}; if op = 'true then return nil; if op = 'false then {'false}; % [f] is atomic. return {f} end; procedure acfsf_thregen!-or(f); % Algebraically closed field standard form re-generate theory % disjunction case. [f] is a disjunction of equations. Returns an % equation equivalent to [f]. begin scalar w; if cl_atfp f then return f; w := numr simp 1; for each equ in rl_argn f do << if rl_op equ neq 'equal then rederr "Bug in acfsf_thregen!-or"; w := multf(w,rl_arg2l equ) >>; return acfsf_0mk2('equal,w) end; endmodule; % [acfsfqe] end; % of file