Artifact ccd7e245351e1a3ebcd1d85672712d7fdf9b7bc0444fc564473c87353f04c688:
- Executable file
r38/packages/support/patches.rlg
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 7302) [annotate] [blame] [check-ins using] [more...]
Fri Jan 12 07:31:07 PST 2007 Loading image file :/home/hearn/reddist/reduce3.8/lisp/psl/linux/red/reduce.img REDUCE 3.8, 15-Apr-2004, patched to 11-Jan-2007 ... 1: 2: 2: 2: 2: 2: 2: 2: 3: 3: % This file tests some of the patches included in the patches.red file. % If the latter file has been correctly installed, none of these should % give an error. % 26 Jun 04. % This used to give a catastrophic error. on rounded; precision 25; 12 solve({- 1.999994390224005889280191x1*y + 7.979376557069442737297309x1 - x2*y^2 + 7.974996524843785878673843x2*y - 15.90005560267478176018537 x2 - 1.999994390224005889280191x3*y + 7.974974155871756786131486x3 - 0.9999943902318732859562161, - 0.9999943902318732859562161x1 - 1.999994390224005889280191x2*y + 7.974974155871756786131486x2 - x3*y^2 + 7.974996524843785878673843 x3*y - 15.90005560267478176018537x3 - 1.999994390224005889280191y + 7.979376557069442737297309, - 0.9999943902318732859562161x2 - 1.999994390224005889280191x3*y + 8.005202587362861321828448x3 - y^2 + 8.009627454668455757619651y - 15.03852566251722658450117}, {x1,x2,x3})$ off rounded; precision 12; 25 % 8 Jul 04; % This used to return zero. int(e^(a^(1/3)*x)*sin x,x); 1/3 a *x 1/3 e *( - cos(x) + a *sin(x)) ----------------------------------- 2/3 a + 1 % 5 Aug 04. % This used to give an "invalid as operator" error; load rlfi; on latex; \documentstyle{article} \begin{document} procedure fac n; if not(fixp n and n>=0) then rederr "non negative integer required" else for i:= 1:n product i; fac fac 10; \begin{displaymath} 3628800 \end{displaymath} off latex; \end{document} % 2 Sep 04. % In rare circumstances, floating point conversion could give an % extraneous error. symbolic read!:num 3.14; (!:rd!: 220957856717865 . -46) % 6 Sep 04. % With rational on, some non-zero factorizations could produce % a zero coefficient. on rational; factorize(r^((1/4*n^2 - 1/4*n + 1)/(n - 1))); 1/(n - 1) {{r ,1}, n/4 {r ,1}} off rational; % 28 Sep 04. % This did not produce a closed form solution. load_package algint; int(sqrt(x-1)/(sqrt x*(x-1)),x); 2*log(sqrt(x - 1) + sqrt(x)) off algint; % 10 Dec 04. % This used to produce an erroneous output. depend {f,b,k},x; on dfprint; {df(f,x,~n) => df(k*b,x,n)}; {f => k*b } x,~n x,n nodepend {f,b,k},x; off dfprint; % 31 Jan 05. Some integrals involving square roots could run forever. % There is no simple example of this error. % 12 Feb 05. SOLVE could produce a spurious recursive loop. solve((4*e^(y^3/3)*cte+2x^2+y^3+3)/e^(y^3/3),y); 3 y_ /3 2 3 {y=root_of(4*e *cte + 2*x + y_ + 3,y_,tag_3)} % 20 Apr 05. This gave a DIVISION FAILED error. int(e^(-a^(1/4)*(-1)^(1/4)*x),x); 1/4 1/4 a *( - 1) *i --------------------------- 1/4 1/4 a *( - 1) *x e *sqrt(a) % 2 May 05. This gave a DIVISION FAILED error. int(e^(-a^(1/4)*(-1)^(1/4)*i*x)*b+(1/4)*e^(-a^(1/4) *(-1)^(1/4)*i*x)*x,x); 3/4 3/4 3/4 3/4 i*( - 4*a *( - 1) *b - a *( - 1) *x - sqrt(a)) -------------------------------------------------------- 1/4 1/4 a *( - 1) *i*x 4*e *a % 22 May 05. This integral never completed. int(e^((3sqrt 5+1)*x)*(sqrt 5+1)+e^((3sqrt 5-1)*x)*(sqrt 5+1),x); 3*sqrt(5)*x 2*x 2*x e *(e *sqrt(5) + 7*e + 2*sqrt(5) + 8) ------------------------------------------------------ x 22*e % 30 May 05. This used to give a spurious "Zero divisor" error. solve({log tan(y/2),y+1/x},{x,y}); - 1 {{x=--------------------------------------, 4*(arbint(2)*pi + atan(sqrt(2) - 1)) y=4*(arbint(2)*pi + atan(sqrt(2) - 1))}, - 1 {x=--------------------------------------, 4*(arbint(2)*pi - atan(sqrt(2) + 1)) y=4*(arbint(2)*pi - atan(sqrt(2) + 1))}} % 4 Oct 05. DEG did not work with rational coefficients. deg(x^3/a-x/5+1/4,x); 3 % 5 Oct 05. Some SOLVE calculations gave a spurious "Zero Divisor" error. ex0:= sqrt(a^2-y^2); 2 2 ex0 := sqrt(a - y ) solve((-log(( - x + a + y)/ex0) + log((x + a + y)/ex0) + x - (a^2 - y^2)/ex0),y); 2 2 2 y_ + a - x {y=root_of(y_ - sqrt( - y_ + a )*log(-------------------) 2 2 sqrt( - y_ + a ) 2 2 y_ + a + x 2 2 + sqrt( - y_ + a )*log(-------------------) + sqrt( - y_ + a )*x 2 2 sqrt( - y_ + a ) 2 - a ,y_,tag_9)} clear ex0; % 16 Nov 05. System errors could occur with rounded and combineexpt on. on rounded,combineexpt; 0.183*e^x*t^4.39; x 4.39 0.183*e *t off rounded,combineexpt; % 22 Nov 05. Some definite integrals with variables other than x could % give a wrong answer. int(e^(-y),y,0,x); x e - 1 -------- x e % 9 Dec 05. With combineexpt on, expressions could be dropped. on combineexpt; 4*e^(-3*h/2) - 3*h*e^(-h) + 2*e^(-h); - (3*h)/2 - h - h 4*e - 3*e *h + 2*e off combineexpt; % 20 Feb 06. The rule for df(Jacobidn(~u,~m),~u) was wrong. df(Jacobidn(x,y),x); 2 - jacobicn(x,y)*jacobisn(x,y)*y % 23 May 06. Derivatives and integrals of matrices were not computed. m := mat((x,x^2),(x^3,x^4)); [ 2] [x x ] m := [ ] [ 3 4] [x x ] df(m,x); [ 1 2*x ] [ ] [ 2 3] [3*x 4*x ] int(m,x); [ 2 3 ] [ x x ] [---- ----] [ 2 3 ] [ ] [ 4 5 ] [ x x ] [---- ----] [ 4 5 ] % 18 Aug 06. After nospur, some traces were still evaluated. load_package hephys; nospur f; x := a*g(f,k,k1)+g(f,k,k2); x := g(f,k,k1)*a + g(f,k,k2) procedure tst x; begin scalar y; spur f; y:=x; nospur f; return x end; tst tst x; g(f,k,k1)*a + g(f,k,k2) clear x; % 29 Sep 06. With dfprint on, derivatives of integrals would print in a % truncated form. depend f,x,y$ on dfprint; df(int(f,y),x,y); int(f,y) x,y off dfprint; nodepend f,x,y; % 11 Jan 07. With rounded arithmetic and factor on, a non-numeric % argument error could occur. on factor,rounded; 0.72*(1.44*p1^2 + 0.096*p1 + 0.28*q0 + 0.0016)^0.5*p1 + 0.0032*(1.44*p1^2 + 0.096*p1 + 0.28*q0 + 0.0016)^0.5 + 1.84*p1^2 -0.0236*p1 + 0.09*q0 + 0.00004; 1.84*(p1 - 0.0128260869565)*p1 + 0.09*(q0 + 0.000444444444444) + 0.72 0.5 *(1.44*(p1 + 0.0666666666667)*p1 + 0.28*(q0 + 0.00571428571429)) *(p1 + 0.00444444444444) off factor,rounded; end; 4: 4: 4: 4: 4: 4: 4: 4: 4: Time for test: 15630 ms, plus GC time: 340 ms 5: 5: Quitting Fri Jan 12 07:31:23 PST 2007