Artifact c9ff463cc12a4606d047e4a6522c050947c28abbf14e06c62d60a8cda1d771d6:
- Executable file
r37/doc/manual2/orthovec.tex
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 13075) [annotate] [blame] [check-ins using] [more...]
- Executable file
r38/doc/manual2/orthovec.tex
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 13075) [annotate] [blame] [check-ins using]
\chapter[ORTHOVEC: scalars and vectors]% {ORTHOVEC: Three-dimensional vector analysis} \label{ORTHOVEC} \typeout{{ORTHOVEC: Three-dimensional vector analysis}} {\footnotesize \begin{center} James W.~Eastwood \\ AEA Technology, Culham Laboratory \\ Abingdon \\ Oxon OX14 3DB, England \\[0.05in] e--mail: jim\_eastwood@aeat.co.uk \end{center} } \ttindex{ORTHOVEC} The ORTHOVEC package is a collection of \REDUCE\ procedures and operations which provide a simple to use environment for the manipulation of scalars and vectors. Operations include addition, subtraction, dot and cross products, division, modulus, div, grad, curl, laplacian, differentiation, integration, ${\bf a \cdot \nabla}$ and Taylor expansion. \section{Initialisation}\label{vstart} \ttindex{VSTART} The procedure \f{START} initialises ORTHOVEC. VSTART provides a menu of standard coordinate systems:- \begin{enumerate} \index{cartesian coordinates} \item cartesian $(x, y, z) = $ {\tt (x, y, z)} \index{cylindrical coordinates} \item cylindrical $(r, \theta, z) = $ {\tt (r, th, z)} \index{spherical coordinates} \item spherical $(r, \theta, \phi) = $ {\tt (r, th, ph) } \item general $( u_1, u_2, u_3 ) = $ {\tt (u1, u2, u3) } \item others \end{enumerate} which the user selects by number. Selecting options (1)-(4) automatically sets up the coordinates and scale factors. Selection option (5) shows the user how to select another coordinate system. If VSTART is not called, then the default cartesian coordinates are used. ORTHOVEC may be re-initialised to a new coordinate system at any time during a given \REDUCE\ session by typing \begin{verbatim} VSTART $. \end{verbatim} \section{Input-Output} ORTHOVEC assumes all quantities are either scalars or 3 component vectors. To define a vector $a$ with components $(c_1, c_2, c_3)$ use the procedure SVEC:\ttindex{SVEC} \begin{verbatim} a := svec(c1, c2, c3); \end{verbatim} The procedure\ttindex{VOUT} \f{VOUT} (which returns the value of its argument) can be used to give labelled output of components in algebraic form: \begin{verbatim} b := svec (sin(x)**2, y**2, z)$ vout(b)$ \end{verbatim} The operator {\tt \_} can be used to select a particular component (1, 2 or 3) for output {\em e.g.} \begin{verbatim} b_1 ; \end{verbatim} \section{Algebraic Operations} Six infix operators, sum, difference, quotient, times, exponentiation and cross product, and four prefix operators, plus, minus, reciprocal and modulus are defined in ORTHOVEC. These operators can take suitable combinations of scalar and vector arguments, and in the case of scalar arguments reduce to the usual definitions of $ +, -, *, /, $ etc. The operators are represented by symbols \index{+ ! 3-D vector}\index{- ! 3-D vector}\index{/ ! 3-D vector} \index{* ! 3-D vector}\index{* ! 3-D vector}\index{"\^{} ! 3-D vector} \index{$><$ ! 3-D vector} \begin{verbatim} +, -, /, *, ^, >< \end{verbatim} \index{$><$ ! diphthong} The composite {\tt ><} is an attempt to represent the cross product symbol $\times$ in ASCII characters. If we let ${\bf v}$ be a vector and $s$ be a scalar, then valid combinations of arguments of the procedures and operators and the type of the result are as summarised below. The notation used is\\ {\em result :=procedure(left argument, right argument) } or\\ {\em result :=(left operand) operator (right operand) } . \\ \underline{Vector Addition} \\ \ttindex{VECTORPLUS}\ttindex{VECTORADD}\index{vector ! addition} \begin{tabular}{rclcrcl} {\bf v} &:=& VECTORPLUS({\bf v}) &{\rm or}& {\bf v} &:=& + {\bf v} \\ s &:=& VECTORPLUS(s) &{\rm or} & s &:=& + s \\ {\bf v} &:=& VECTORADD({\bf v},{\bf v}) &{\rm or }& {\bf v} &:=& {\bf v} + {\bf v} \\ s &:=& VECTORADD(s,s) &{\rm or }& s &:=& s + s \\ \end{tabular} \\ \underline{Vector Subtraction} \\ \ttindex{VECTORMINUS}\ttindex{VECTORDIFFERENCE}\index{vector ! subtraction} \begin{tabular}{rclcrcl} {\bf v} &:=& VECTORMINUS({\bf v}) &{\rm or}& {\bf v} &:=& - {\bf v} \\ s &:=& VECTORMINUS(s) &{\rm or} & s &:=& - s \\ {\bf v} &:=& VECTORDIFFERENCE({\bf v},{\bf v}) &{\rm or }& {\bf v} &:=& {\bf v} - {\bf v} \\ s &:=& VECTORDIFFERENCE(s,s) &{\rm or }& s &:=& s - s \\ \end{tabular} \\ \underline{Vector Division}\\ \ttindex{VECTORRECIP}\ttindex{VECTORQUOTIENT}\index{vector ! division} \begin{tabular}{rclcrcl} {\bf v} &:=& VECTORRECIP({\bf v}) &{\rm or}& {\bf v} &:=& / {\bf v} \\ s &:=& VECTORRECIP(s) &{\rm or} & s &:=& / s \\ {\bf v} &:=& VECTORQUOTIENT({\bf v},{\bf v}) &{\rm or }& {\bf v} &:=& {\bf v} / {\bf v} \\ {\bf v} &:=& VECTORQUOTIENT({\bf v}, s ) &{\rm or }& {\bf v} &:=& {\bf v} / s \\ {\bf v} &:=& VECTORQUOTIENT( s ,{\bf v}) &{\rm or }& {\bf v} &:=& s / {\bf v} \\ s &:=& VECTORQUOTIENT(s,s) &{\rm or }& s &:=& s / s \\ \end{tabular} \\ \underline{Vector Multiplication}\\ \ttindex{VECTORTIMES}\index{vector ! multiplication} \begin{tabular}{rclcrcl} {\bf v} &:=& VECTORTIMES( s ,{\bf v}) &{\rm or }& {\bf v} &:=& s * {\bf v} \\ {\bf v} &:=& VECTORTIMES({\bf v}, s ) &{\rm or }& {\bf v} &:=& {\bf v} * s \\ s &:=& VECTORTIMES({\bf v},{\bf v}) &{\rm or }& s &:=& {\bf v} * {\bf v} \\ s &:=& VECTORTIMES( s , s ) &{\rm or }& s &:=& s * s \\ \end{tabular} \\ \underline{Vector Cross Product} \\ \ttindex{VECTORCROSS}\index{cross product}\index{vector ! cross product} \begin{tabular}{rclcrcl} {\bf v} &:=& VECTORCROSS({\bf v},{\bf v}) &{\rm or }& {\bf v} &:=& {\bf v} $\times$ {\bf v} \\ \end{tabular} \\ \underline{Vector Exponentiation}\\ \ttindex{VECTOREXPT}\index{vector ! exponentiation} \begin{tabular}{rclcrcl} s &:=& VECTOREXPT ({\bf v}, s ) &{\rm or }& s &:=& {\bf v} \^{} s \\ s &:=& VECTOREXPT ( s , s ) &{\rm or }& s &:=& s \^{} s \\ \end{tabular} \\ \underline{Vector Modulus}\\ \ttindex{VMOD}\index{vector ! modulus} \begin{tabular}{rcl} s &:=& VMOD (s)\\ s &:=& VMOD ({\bf v}) \\ \end{tabular} \\ All other combinations of operands for these operators lead to error messages being issued. The first two instances of vector multiplication are scalar multiplication of vectors, the third is the \index{vector ! dot product}\index{vector ! inner product} \index{inner product}\index{dot product} product of two scalars and the last is the inner (dot) product. The prefix operators {\tt +, -, /} can take either scalar or vector arguments and return results of the same type as their arguments. VMOD returns a scalar. In compound expressions, parentheses may be used to specify the order of combination. If parentheses are omitted the ordering of the operators, in increasing order of precedence is \begin{verbatim} + | - | dotgrad | * | >< | ^ | _ \end{verbatim} and these are placed in the precedence list defined in \REDUCE{} after $<$. Vector divisions are defined as follows: If ${\bf a}$ and ${\bf b}$ are vectors and $c$ is a scalar, then \begin{eqnarray*} {\bf a} / {\bf b} & = & \frac{{\bf a} \cdot {\bf b}}{ \mid {\bf b} \mid^2}\\ c / {\bf a} & = & \frac{c {\bf a} }{ \mid {\bf a} \mid^2} \end{eqnarray*} Both scalar multiplication and dot products are given by the same symbol, braces are advisable to ensure the correct precedences in expressions such as $({\bf a} \cdot {\bf b}) ({\bf c} \cdot {\bf d})$. Vector exponentiation is defined as the power of the modulus:\\ ${\bf a}^n \equiv {\rm VMOD}(a)^n = \mid {\bf a} \mid^n$ \section{Differential Operations} Differential operators provided are div, grad, curl, delsq, and dotgrad. \index{div operator}\index{grad operator}\index{curl operator} \index{delsq operator}\index{dotgrad operator} All but the last of these are prefix operators having a single vector or scalar argument as appropriate. Valid combinations of operator and argument, and the type of the result are shown in table~\ref{vvecttable}. \begin{table} \begin{center} \begin{tabular}{rcl} s & := & div ({\bf v}) \\ {\bf v} & := & grad(s) \\ {\bf v} & := & curl({\bf v}) \\ {\bf v} & := & delsq({\bf v}) \\ s & := & delsq(s) \\ {\bf v} & := & {\bf v} dotgrad {\bf v} \\ s & := & {\bf v} dotgrad s \end{tabular} \end{center} \caption{ORTHOVEC valid combinations of operator and argument}\label{vvecttable} \end{table} All other combinations of operator and argument type cause error messages to be issued. The differential operators have their usual meanings. The coordinate system used by these operators is set by invoking VSTART (cf. Sec.~\ref{vstart}). The names {\tt h1}, {\tt h2} and {\tt h3 } are reserved for the scale factors, and {\tt u1}, {\tt u2} and {\tt u3} are used for the coordinates. A vector extension, VDF, of the \REDUCE\ procedure DF allows the differentiation of a vector (scalar) with respect to a scalar to be performed. Allowed forms are\ttindex{VDF} VDF({\bf v}, s) $\rightarrow$ {\bf v} and VDF(s, s) $\rightarrow$ s , where, for example\\ \begin{eqnarray*} {\tt vdf( B,x)} \equiv \frac{\partial {\bf B}}{\partial x} \end{eqnarray*} The standard \REDUCE\ procedures DEPEND and NODEPEND have been redefined to allow dependences of vectors to be compactly defined. For example\index{DEPEND statement}\index{NODEPEND statement} \begin{verbatim} a := svec(a1,a2,a3)$; depend a,x,y; \end{verbatim} causes all three components {\tt a1},{\tt a2} and {\tt a3} of {\tt a} to be treated as functions of {\tt x} and {\tt y}. Individual component dependences can still be defined if desired. \begin{verbatim} depend a3,z; \end{verbatim} The procedure VTAYLOR gives truncated Taylor series expansions of scalar or vector functions:-\ttindex{VTAYLOR} \begin{verbatim} vtaylor(vex,vx,vpt,vorder); \end{verbatim} returns the series expansion of the expression VEX with respect to variable VX\ttindex{VORDER} about point VPT to order VORDER. Valid combinations of argument types are shown in table~\ref{ORTHOVEC:validexp}. \\ \begin{table} \begin{center} \begin{tabular}{cccc} VEX & VX & VPT & VORDER \\[2ex] {\bf v} & {\bf v} & {\bf v} & {\bf v}\\ {\bf v} & {\bf v} & {\bf v} & s\\ {\bf v} & s & s & s \\ s & {\bf v} & {\bf v} & {\bf v} \\ s & {\bf v} & {\bf v} & s\\ s & s & s & s\\ \end{tabular} \end{center} \caption{ORTHOVEC valid combination of argument types.}\label{ORTHOVEC:validexp} \end{table} Any other combinations cause error messages to be issued. Elements of VORDER must be non-negative integers, otherwise error messages are issued. If scalar VORDER is given for a vector expansion, expansions in each component are truncated at the same order, VORDER. The new version of Taylor expansion applies\index{l'H\^opital's rule} l'H\^opital's rule in evaluating coefficients, so handle cases such as $\sin(x) / (x) $ , etc. which the original version of ORTHOVEC could not. The procedure used for this is LIMIT,\ttindex{LIMIT} which can be used directly to find the limit of a scalar function {\tt ex} of variable {\tt x} at point {\tt pt}:- \begin{verbatim} ans := limit(ex,x,pt); \end{verbatim} \section{Integral Operations} Definite and indefinite vector, volume and scalar line integration procedures are included in ORTHOVEC. They are defined as follows: \ttindex{VINT}\ttindex{DVINT} \ttindex{VOLINT}\ttindex{DVOLINT}\ttindex{LINEINT}\ttindex{DLINEINT} \begin{eqnarray*} {\rm VINT} ({\bf v},x) & = & \int {\bf v}(x)dx\\ % {\rm DVINT} ({\bf v},x, a, b) & = & \int^b_a {\bf v} (x) dx\\ % {\rm VOLINT} ({\bf v}) & = & \int {\bf v} h_1 h_2 h_3 du_1 du_2 du_3\\ % {\rm DVOLINT}({\bf v},{\bf l},{\bf u},n) & = & \int^{\bf u}_{\bf l} {\bf v} h_1 h_2 h_3 du_1 du_2 du_3\\ % {\rm LINEINT} ({\bf v, \omega}, t) & = & \int {\bf v} \cdot {\bf dr} \equiv \int v_i h_i \frac{\partial \omega_i}{\partial t} dt\\ % {\rm DLINEINT} ({\bf v, \omega} t, a, b) & = & \int^b_a v_i h_i \frac{\partial \omega_i}{\partial t} dt\\ \end{eqnarray*} In the vector and volume integrals, ${\bf v}$ are vector or scalar, $a, b,x$ and $n$ are scalar. Vectors ${\bf l}$ and ${\bf u}$ contain expressions for lower and upper bounds to the integrals. The integer index $n$ defines the order in which the integrals over $u_1, u_2$ and $u_3$ are performed in order to allow for functional dependencies in the integral bounds: \begin{center} \begin{tabular}{ll} n & order\\ 1 & $u_1~u_2~u_3$\\ % 2 & $u_3~u_1~u_2$\\ % 3 & $u_2~u_3~u_1$\\ % 4 & $u_1~u_3~u_2$\\ % 5 & $u_2~u_1~u_3$\\ otherwise & $u_3~u_2~u_1$\\ \end{tabular} \end{center} The vector ${\bf \omega}$ in the line integral's arguments contain explicit parameterisation of the coordinates $u_1, u_2, u_3$ of the line ${\bf u}(t)$ along which the integral is taken.