Artifact c66ad00d459130951c9fe3ae1572f840bdd788f8d70732b24a23310eab5a64e7:
- Executable file
r36/src/poly.red
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 198324) [annotate] [blame] [check-ins using] [more...]
module poly; % Header module and low-level support for poly package. % Author: Anthony C. Hearn. % Copyright (c) 1991 RAND. All rights reserved. create!-package('(poly polrep quotf gcd exptf kernel mksp reord dmode dmodeop rational rnelem gint cpxrn compopr modular facform homog tdconv primfac specfac kronf conj diff polyop decompose interpol subs2q subs3q subs4q horner), nil); fluid '(!*mcd !*nosq wtl!*); % switch nosq; % Particular infix operators used in standard forms. newtok '((!. !+) add); newtok '((!. !*) mult); newtok '((!. !^) to); newtok '((!. !* !*) to); newtok '((!. !/) over); infix .^,.*,.+,./; % Constructors and selectors for standard forms. smacro procedure u.+v; % Standard (polynomial) addition constructor. u . v; smacro procedure lc u; % Leading coefficient of standard form. cdar u; smacro procedure ldeg u; % Leading degree of standard form. cdaar u; smacro procedure lt u; % Leading term of standard form. car u; smacro procedure u.*v; % Standard form multiplication constructor. u . v; smacro procedure mvar u; % Main variable of standard form. caaar u; smacro procedure lpow u; % Leading power of standard form. caar u; smacro procedure pdeg u; % Returns the degree of the power U. cdr u; smacro procedure red u; % Reductum of standard form. cdr u; smacro procedure tc u; % Coefficient of standard term. cdr u; smacro procedure tdeg u; % Degree of standard term. cdar u; smacro procedure tpow u; % Power of standard term. car u; smacro procedure tvar u; % Main variable of a standard term. caar u; smacro procedure numr u; % Numerator of standard quotient. car u; smacro procedure denr u; % Denominator of standard quotient. cdr u; smacro procedure u ./ v; % Constructor for standard quotient. u . v; symbolic smacro procedure domainp u; atom u or atom car u; % Procedures for converting between parts of standard quotients and % prefix forms. symbolic procedure !*a2f u; % U is an algebraic expression. Value is the equivalent form % or an error if conversion is not possible; !*q2f simp!* u; symbolic procedure !*a2k u; % U is an algebraic expression. Value is the equivalent kernel % or an error if conversion is not possible. % Note: earlier versions used SIMP0. begin scalar x; if kernp(x := simp!* u) then return mvar numr x else typerr(if null u then 0 else u,'kernel) end; symbolic procedure !*a2kwoweight u; % U is an algebraic expression. Value is the equivalent kernel % neglecting any weights, or an error if conversion is not possible. (if kernp x then mvar numr x else typerr(u,'kernel)) where x=simp!* u where !*uncached=t,wtl!*=nil; symbolic procedure !*d2q u; % Converts domain element U into a standard quotient. if numberp u then if zerop u then nil ./ 1 % else if floatp u then mkfloat u ./ 1 else u ./ 1 % The following converts a domain rational to a SQ, which may not % be desirable. % else if eqcar(u,'!:rn!:) and !*mcd then cdr u else if !:zerop u then nil ./ 1 else u ./ 1; symbolic procedure !*ff2a(u,v); % Converts ratio of two forms U and V to a prefix form. (if wtl!* then prepsq x else mk!*sq x) where x = cancel( u ./ v); smacro procedure !*f2a u; prepf u; smacro procedure !*f2q u; % U is a standard form, value is a standard quotient. u . 1; smacro procedure !*k2f u; % U is a kernel, value is a standard form. list((u .** 1) . 1); symbolic smacro procedure !*kk2f u; % U is a non-unique kernel, value is a standard form. list(mksp(u,1) . 1); symbolic smacro procedure !*kk2q u; % U is a non-unique kernel, value is a standard quotient. list(mksp(u,1) .* 1) ./ 1; smacro procedure !*k2q u; % U is a kernel, value is a standard quotient. list((u .** 1) . 1) . 1; symbolic procedure !*n2f u; % U is a number. Value is a standard form. if zerop u then nil else u; smacro procedure !*p2f u; % U is a standard power, value is a standard form. list(u . 1); smacro procedure !*p2q u; % U is a standard power, value is a standard quotient. list(u . 1) . 1; symbolic procedure !*q2a u; % U is a standard quotient, value is an algebraic expression. !*q2a1(u,!*nosq); symbolic procedure !*q2a1(u,v); if null v then mk!*sq u else prepsqxx u; symbolic procedure !*q2f u; % U is a standard quotient, value is a standard form. if denr u=1 then numr u else typerr(prepsq u,'polynomial); symbolic procedure !*q2k u; % U is a standard quotient, value is a kernel or an error if % conversion not possible. if kernp u then mvar numr u else typerr(prepsq u,'kernel); smacro procedure !*t2f u; % U is a standard term, value is a standard form. list u; smacro procedure !*t2q u; % U is a standard term, value is a standard quotient. list u . 1; symbolic smacro procedure tvar a; caar a; endmodule; module polrep; % Arithmetic operations on standard forms and quotients. % Author: Anthony C. Hearn. % Copyright (c) 1991 RAND. All rights reserved. fluid '(!*asymp!* !*exp !*factor !*gcd !*lcm !*mcd !*rationalize frlis!* !*roundall !*rounded !*sqfree !*sub2 asymplis!* dmode!* subfg!* ncmp!* wtl!*); global '(!*group powlis!*); global '(rd!-tolerance!* cr!-tolerance!*); put('roundall,'simpfg,'((t (rmsubs)))); switch roundall; !*roundall := t; % Default is on. symbolic smacro procedure subtrsq(u,v); addsq(u,negsq v); symbolic procedure addsq(u,v); % U and V are standard quotients. % Value is canonical sum of U and V. if null numr u then v else if null numr v then u else if denr u=1 and denr v=1 then addf(numr u,numr v) ./ 1 else begin scalar x,y,z; if null !*exp then <<u := numr u ./ mkprod denr u; v := numr v ./ mkprod denr v>>; if !*lcm then x := gcdf!*(denr u,denr v) else x := gcdf(denr u,denr v); z := canonsq(quotf(denr u,x) ./ quotf(denr v,x)); y := addf(multf(denr z,numr u),multf(numr z,numr v)); if null y then return nil ./ 1; z := multf(denr u,denr z); return if x=1 or (x := gcdf(y,x))=1 then y ./ z else canonsq(quotf(y,x) ./ quotf(z,x)) end; symbolic procedure multsq(u,v); % U and V are standard quotients. % Value is canonical product of U and V. if null numr u or null numr v then nil ./ 1 else if denr u=1 and denr v=1 then multf(numr u,numr v) ./ 1 else begin scalar x,y,z; x := gcdf(numr u,denr v); y := gcdf(numr v,denr u); z := multf(quotf(numr u,x),quotf(numr v,y)); x := multf(quotf(denr u,y),quotf(denr v,x)); return canonsq(z ./ x) end; symbolic procedure negsq u; negf numr u ./ denr u; smacro procedure multpq(u,v); multsq(!*p2q u,v); symbolic procedure cancel u; %returns canonical form of non-canonical standard form U; if !*mcd or denr u=1 then multsq(numr u ./ 1,1 ./ denr u) else multsq(numr u ./ 1,simpexpt list(mk!*sq(denr u ./ 1),-1)); % ***** FUNCTIONS FOR ADDING AND MULTIPLYING STANDARD FORMS ***** symbolic smacro procedure peq(u,v); %tests for equality of powers U and V; u = v; symbolic procedure addf(u,v); % U and V are standard forms. Value is standard form for U+V. if null u then v else if null v then u else if domainp u then addd(u,v) else if domainp v then addd(v,u) else if peq(lpow u,lpow v) then (if null x then y else lpow u .* x .+ y) where x=addf(lc u,lc v),y=addf(red u,red v) else if ordpp(lpow u,lpow v) then lt u .+ addf(red u,v) else lt v .+ addf(u,red v); symbolic procedure addd(u,v); % U is a domain element, V a standard form. % Value is a standard form for U+V. if null v then u else if domainp v then adddm(u,v) else lt v .+ addd(u,red v); symbolic procedure adddm(u,v); % U and V are both non-zero domain elements. % Value is standard form for U+V. % The int-equiv-chk is needed to convert say (:MOD: . 0) to NIL. % A simpler function might therefore be possible and more efficient. if atom u and atom v then (if null dmode!* or not flagp(dmode!*,'convert) then !*n2f x else int!-equiv!-chk apply1(get(dmode!*,'i2d),x)) where x=plus2(u,v) else dcombine(u,v,'plus); symbolic procedure domainp u; atom u or atom car u; symbolic procedure noncomf u; if domainp u then nil else noncomp mvar u or noncomf lc u or noncomf red u; symbolic procedure noncomp u; pairp u and ((if pairp a then noncomf u else flagp(a,'noncom)) where a=car u); symbolic procedure multf(u,v); %U and V are standard forms. %Value is standard form for U*V; begin scalar x,y; a: if null u or null v then return nil else if u=1 then return v % ONEP else if v=1 then return u % ONEP else if domainp u then return multd(u,v) else if domainp v then return multd(v,u) else if not(!*exp or ncmp!* or wtl!* or x) then <<u := mkprod u; v := mkprod v; x := t; go to a>>; x := mvar u; y := mvar v; if noncomp x and noncomp y then return multfnc(u,v) else if x eq y then <<% Allow for free variables in rules. if not fixp ldeg u or not fixp ldeg v then x := x .** reval list('plus,ldeg u,ldeg v) else x := mkspm(x,ldeg u+ldeg v); % The order in the next line is IMPORTANT. See analysis % by J.H. Davenport et al. for details. y := addf(multf(red u,v),multf(!*t2f lt u,red v)); return if null x or null(u := multf(lc u,lc v)) then <<!*asymp!* := t; y>> else if x=1 then addf(u,y) else if null !*mcd then addf(!*t2f(x .* u),y) else x .* u .+ y>> else if ordop(x,y) % or noncomp y and noncomf lc u then <<x := multf(lc u,v); y := multf(red u,v); return if null x then y else lpow u .* x .+ y>>; x := multf(u,lc v); y := multf(u,red v); return if null x then y else lpow v .* x .+ y end; symbolic procedure multfnc(u,v); % Returns canonical product of U and V, with both main vars non- % commutative. begin scalar x,y; x := multf(lc u,!*t2f lt v); if null x then nil else if not domainp x and mvar x eq mvar u then x := addf(if null (y := mkspm(mvar u,ldeg u+ldeg x)) then nil else if y = 1 then lc x else !*t2f(y .* lc x), multf(!*p2f lpow u,red x)) else x := !*t2f(lpow u .* x); return addf(x,addf(multf(red u,v),multf(!*t2f lt u,red v))) end; symbolic procedure multd(u,v); % U is a domain element, V a standard form. % Value is standard form for U*V. if null v then nil else if v=1 then u % Common enough to be tested. else if domainp v then multdm(u,v) else lpow v .* multd(u,lc v) .+ multd(u,red v); symbolic procedure multdm(u,v); % U and V are both non-zero domain elements. % Value is standard form for U*V; if atom u and atom v then (lambda x; if null dmode!* or not flagp(dmode!*,'convert) then x else % int!-equiv!-chk apply1(get(dmode!*,'i2d),x)) times2(u,v) else dcombine(u,v,'times); smacro procedure multpf(u,v); multf(!*p2f u,v); symbolic procedure negf u; if null u then nil else if domainp u then !:minus if atom u and flagp(dmode!*,'convert) then apply1(get(dmode!*,'i2d),u) else u else lpow u .* negf lc u .+ negf red u; symbolic procedure degreef(pol,var); % Find degree of kernel in standard form pol. % Note: uniqueness of kernel assumed. if domainp pol then 0 else if mvar pol eq var then ldeg pol else max(degreef(lc pol,var),degreef(red pol,var)); put('!*sq,'lengthfn,'!*sqlength); symbolic procedure !*sqlength u; (if denr car u=1 then x else x+termsf denr car u) where x = termsf numr car u; symbolic procedure terms u; <<lprim "Please use LENGTH instead"; termsf numr simp!* u>>; flag('(terms),'opfn); flag('(terms),'noval); symbolic procedure termsf u; % U is a standard form. % Value is number of terms in U (excluding kernel structure). begin integer n; while not domainp u do <<n := n + termsf lc u; u := red u>>; return if null u then n else n+1 end; symbolic procedure tmsf u; % U is a standard form. % Value is number of terms in U (including kernel structure). begin integer n; scalar x; % Integer declaration initializes N to 0. while not domainp u do <<n := n+(if sfp(x := mvar u) then tmsf x else 1)+tmsf!* lc u; if ldeg u neq 1 then if ldeg u=2 then n := n+1 else n := n+2; u := red u>>; % Previously, if U was non-zero, we used to add % one more here. return if null u then n else n+1 end; symbolic procedure tmsf!* u; if numberp u and abs fix u=1 then 0 else tmsf u; % Was tmsf u+1. symbolic procedure tms u; tmsf numr simp!* u; flag('(tms),'opfn); flag('(tms),'noval); % ***** FUNCTIONS FOR WORKING WITH STRUCTURED FORMS ***** symbolic procedure offexpchk u; % Return structured form for standard quotient u. % The freevar check is required to correctly evaluate rules like % for all n let f(a^n-b^n)=c when exp is off and gcd on. if frlis!* and freevarinexptchk numr u or freevarinexptchk denr u then u else canprod(mkprod numr u,mkprod denr u); symbolic procedure freevarinexptchk u; not domainp u and(not numberp ldeg u or freevarinexptchk lc u or freevarinexptchk red u); symbolic procedure mkprod u; begin scalar w,x,y,z,!*exp,!*sub2; if null u or kernlp u then return u; %first make sure there are no further simplifications; !*sub2 := t; if denr(x := subs2(u ./ 1)) = 1 and numr x neq u then <<u := numr x; if null u or kernlp u then return u>>; !*exp := t; w := ckrn u; u := quotf(u,w); x := expnd u; if null x or kernlp x then return multf(w,x); % After this point, X is not KERNLP. % The check below for *MCD was suggested by James Davenport. % Without it, on gcd; off mcd,exp; (x**2+2x+1)/x+1; loops % forever. if !*mcd and (!*sqfree or !*factor or !*gcd) then y := fctrf x else <<y := ckrn x; x := quotf(x,y); y := list(y,x . 1)>>; if cdadr y>1 or cddr y then <<z := car y; for each j in cdr y do z := multf(mksp!*(car j,cdr j),z)>> else if not !*group and tmsf u>tmsf caadr y then z := multf(mksp!*(caadr y,cdadr y),car y) else z := mksp!*(u,1); return multf(w,z) end; symbolic procedure expnd u; begin scalar !*sub2,v; u := expnd1 u; return if !*sub2 and denr(v := subs2f u) = 1 then numr v else u end; symbolic procedure expnd1 u; if domainp u then u else addf(if not sfp mvar u or ldeg u<0 then multpf(lpow u,expnd1 lc u) else multf(exptf(expnd1 mvar u,ldeg u),expnd1 lc u), expnd1 red u); symbolic procedure canprod(p,q); % P and Q are kernel product standard forms, value is P/Q in % which a top level standard form kernel by itself has been % unwound. begin scalar v,w,x,y,z; if domainp q or red q or (not domainp p and red p) then return cancel(p ./ q); % Look for possible cancellations. while not domainp p or not domainp q do if sfpf p then <<z := cprod1(mvar p,ldeg p,v,w); v := car z; w := cdr z; p := lc p>> else if sfpf q then <<z := cprod1(mvar q,ldeg q,w,v); w := car z; v := cdr z; q := lc q>> else if domainp p then <<y := lpow q . y; q := lc q>> else if domainp q then <<x := lpow p . x; p := lc p>> else <<x := lpow p . x; y := lpow q . y; p := lc p; q := lc q>>; v := reprod(v,reprod(x,p)); w := reprod(w,reprod(y,q)); if minusf w then <<v := negf v; w := negf w>>; w := cancel(v ./ w); % Final check for unnecessary structure. v := numr w; if not domainp v and null red v and lc v=1 and ldeg v=1 and sfp(x := mvar v) then v := x; w := denr w; if not domainp w and null red w and lc w=1 and ldeg w=1 and sfp(x := mvar w) then w := x; return canonsq(v ./ w) end; symbolic procedure sfpf u; not domainp u and sfp mvar u; symbolic procedure sfp u; % True if mvar U is a standard form. not atom u and not atom car u; symbolic procedure reprod(u,v); % U is a list of powers, V a standard form. % Value is product of terms in U with V. <<while u do <<v := multpf(car u,v); u := cdr u>>; v>>; symbolic procedure cprod1(p,m,v,w); % U is a standard form, which occurs in a kernel raised to power M. % V is a list of powers multiplying P**M, W a list dividing it. % Value is a dotted pair of lists of powers after all possible % kernels have been cancelled. begin scalar z; z := cprod2(p,m,w,nil); w := cadr z; v := append(cddr z,v); z := cprod2(car z,m,v,t); v := cadr z; w := append(cddr z,w); if car z neq 1 then v := mksp(car z,m) . v; return v . w end; symbolic procedure cprod2(p,m,u,b); %P and M are as in CPROD1. U is a list of powers. B is true if P**M %multiplies U, false if it divides. %Value has three parts: the first is the part of P which does not %have any common factors with U, the second a list of powers (plus %U) which multiply U, and the third a list of powers which divide U; %it is implicit here that the kernel standard forms are positive; begin scalar n,v,w,y,z; while u and p neq 1 do <<if (z := gcdf(p,caar u)) neq 1 then <<p := quotf(p,z); y := quotf(caar u,z); if y neq 1 then v := mksp(y,cdar u) . v; if b then v := mksp(z,m+cdar u) . v else if (n := m-cdar u)>0 then w := mksp(z,n) . w else if n<0 then v := mksp(z,-n) . v>> else v := car u . v; u := cdr u>>; return (p . nconc!*(u,v) . w) end; symbolic procedure mkspm(u,p); %U is a unique kernel, P an integer; %value is 1 if P=0, NIL if U**P is 0, else standard power of U**P; % should we add a check for NOT(U EQ K!*) in first line? if p=0 then 1 else begin scalar x; if subfg!* and (x:= atsoc(u,asymplis!*)) and cdr x<=p then return nil; sub2chk u; return u .** p end; symbolic procedure sub2chk u; %determines if kernel U is such that a power substitution is %necessary; if subfg!* and(atsoc(u,powlis!*) or not atom u and car u memq '(expt sqrt)) then !*sub2 := t; % ***** FUNCTIONS FOR DIVIDING STANDARD FORMS ***** symbolic procedure quotsq(u,v); multsq(u,invsq v); symbolic procedure quotf!*(u,v); % We do the rationalizesq step to allow for surd divisors. if null u then nil else (if x then x else (if denr y = 1 then numr y else errach list("DIVISION FAILED",u,v)) where y=rationalizesq(u ./ v)) where x=quotf(u,v); symbolic procedure quotf(u,v); begin scalar xexp; xexp := !*exp; !*exp := t; u := quotf1(u,v); !*exp := xexp; return u end; symbolic procedure quotf1(p,q); %P and Q are standard forms %Value is the quotient of P and Q if it exists or NIL; if null p then nil else if p=q then 1 else if q=1 then p else if domainp q then quotfd(p,q) else if domainp p then nil else if mvar p eq mvar q then begin scalar u,v,w,x,y,z,z1; integer n; a:if idp(u := rank p) or idp(v := rank q) or u<v then return nil; %the above IDP test is because of the possibility of a free %variable in the degree position from LET statements; u := lt!* p; v := lt!* q; w := mvar q; x := quotf1(tc u,tc v); if null x then return nil; n := tdeg u-tdeg v; if n neq 0 then y := w .** n; % p := addf2zro(p,multf(if n=0 then q p := addf(p,multf(if n=0 then q else multpf(y,q),negf x)); %leading terms of P and Q do not cancel if MCD is off; %however, there may be a problem with off exp; if p and (domainp p or not(mvar p eq w)) then return nil else if n=0 then go to b; z := aconc!*(z,y .* x); %provided we have a non-zero power of X, terms %come out in right order; if null p then return if z1 then rnconc(z,z1) else z; go to a; b: if null p then return rnconc(z,x) else if !*mcd then return nil else z1 := x; go to a end else if ordop(mvar p,mvar q) then quotk(p,q) else nil; % symbolic procedure addf2zro(p,q); % <<q := addf(p,q); % if not dmode!* memq '(!:rd!: !:cr!:) % or null q or null (p := quotf(q,p)) then q % else if domainp p then % if eqcar(p,'!:rd!:) % and lessp!:(abs!: bfloat round!* p,rd!-tolerance!*) % or eqcar(p,'!:cr!:) % and (lessp!:(plus!:(times!:(x,x),times!:(y,y)),cr!-tolerance!*) % where x=bfloat round!* tagrl p,y=bfloat round!* tagim p) % then nil else q>>; symbolic procedure rnconc(u,v); % This is a "Reduce" version of nconc that doesn't assume that % its second argument is a list. It can be replaced by nconc % (or append) in systems that don't have such a requirement. if null u then v else begin scalar w; w := u; while cdr w do <<w := cdr w>>; rplacd(w,v); return u end; symbolic procedure quotfd(p,q); % P is a standard form, Q a domain element. % Value is P/Q if exact division is possible, or NIL otherwise. if p=q then 1 else if flagp(dmode!*,'field) then divd(p,q) else if domainp p then quotdd(p,q) else quotk(p,q); symbolic procedure divd(v,u); % U is a domain element, V a standard form. % Value is standard form for V/U. if null u then if null v then rerror(poly,1,"0/0 formed") else rerror(poly,2,"Zero divisor") else if null v then nil else if domainp v then divdm(v,u) else lpow v .* divd(lc v,u) .+ divd(red v,u); symbolic procedure divdm(v,u); % U and V are both non-zero domain elements. % Value is standard form for V/U. if atom v and atom u then if remainder(v,u)=0 then v/u else !:rn2rd mkrn(v,u) else y % (if null dmode!* then y else int!-equiv!-chk y) where y=dcombine(v,u,'quotient); symbolic procedure quotdd(u,v); % U and V are domain elements. Value is U/V if division is exact, % NIL otherwise. begin scalar w; if atom u then if atom v then <<w := divide(u,v); return if cdr w = 0 then car w else nil>> else if (w := get(car v,'i2d)) then u := apply1(w,u) else if atom v and (w := get(car u,'i2d)) then v := apply1(w,v); return dcombine(u,v,'quotient) end; symbolic procedure quotk(p,q); (lambda w; if w then if null red p then list (lpow p .* w) else (lambda y;if y then lpow p .* w .+ y else nil) quotf1(red p,q) else nil) quotf1(lc p,q); symbolic procedure rank p; %P is a standard form %Value is the rank of P; if !*mcd then ldeg p else begin integer m,n; scalar y; n := ldeg p; y := mvar p; a: m := ldeg p; if null red p then return n-m; p := red p; if degr(p,y)=0 then return if m<0 then if n<0 then -m else n-m else n; go to a end; symbolic procedure lt!* p; %Returns true leading term of polynomial P; if !*mcd or ldeg p>0 then car p else begin scalar x,y; x := lt p; y := mvar p; a: p := red p; if null p then return x else if degr(p,y)=0 then return (y . 0) .* p; go to a end; symbolic procedure remf(u,v); %returns the remainder of U divided by V; if null v then rerror(poly,201,"Zero divisor") else cdr qremf(u,v); put('remainder,'polyfn,'remf); symbolic procedure qremf(u,v); % Returns the quotient and remainder of U divided by V. % Exp cannot be off, otherwise a loop can occur. e.g., % qremf('(((x . 1) . -1) . 1),'(((x . 2) . -3) . 4)). begin integer n; scalar !*exp,x,y,z; !*exp := t; if domainp v then return qremd(u,v); z := list nil; % Final value. a: if domainp u then return praddf(z,nil . u) else if mvar u eq mvar v then if (n := ldeg u-ldeg v)<0 then return praddf(z,nil . u) else <<x := qremf(lc u,lc v); y := multpf(lpow u,cdr x); z := praddf(z,(if n=0 then car x else multpf(mvar u .** n,car x)) . y); u := if null car x then red u else addf(addf(u,multf(if n=0 then v else multpf(mvar u .** n,v), negf car x)), negf y); go to a>> else if not ordop(mvar u,mvar v) then return praddf(z,nil . u); x := qremf(lc u,v); z := praddf(z,multpf(lpow u,car x) . multpf(lpow u,cdr x)); u := red u; go to a end; symbolic procedure praddf(u,v); % U and V are dotted pairs of standard forms. addf(car u,car v) . addf(cdr u,cdr v); symbolic procedure qremd(u,v); % Returns a dotted pair of quotient and remainder of form U % divided by domain element V. if null u then u . u else if v=1 then list u else if flagp(dmode!*,'field) then list multd(!:recip v,u) else if domainp u then !:divide(u,v) else begin scalar x; x := qremf(lc u,v); return praddf(multpf(lpow u,car x) . multpf(lpow u,cdr x), qremd(red u,v)) end; symbolic procedure lqremf(u,v); %returns a list of coeffs of powers of V in U, constant term first; begin scalar x,y; y := list u; while car(x := qremf(car y,v)) do y := car x . cdr x . cdr y; return reversip!* y end; symbolic procedure minusf u; %U is a non-zero standard form. %Value is T if U has a negative leading numerical coeff, %NIL otherwise; if null u then nil else if domainp u then if atom u then u<0 else apply1(get(car u,'minusp),u) else minusf lc u; symbolic procedure absf!* u; % Returns representation for absolute value of standard form U. (if domainp u then x else !*p2f mksp(list('abs,prepf x),1)) where x = absf u; symbolic procedure absf u; if minusf u then negf u else u; symbolic procedure canonsq u; % U is a standard quotient. Value is a standard quotient in which % the leading power of the denominator has a positive numerical % coefficient and the denominator is normalized where possible. if denr u=1 then u else if null numr u then nil ./ 1 else begin scalar x,y; % This example shows the following gcd check is needed: % a:=1+x/2; let x**2=0; a*a; % Should only be needed when an asymptotic reduction occurs. if asymplis!* and ((x := gcdf(numr u,denr u)) neq 1) then u := quotf(numr u,x) ./ quotf(denr u,x); % Now adjust for a positive leading numerical coeff in denr. x := lnc denr u; if x=1 then return u else if atom x then if minusp x then <<u := negf numr u ./ negf denr u; x := -x>> else nil else if apply1(get(car x,'minusp),x) then <<u := negf numr u ./ negf denr u; x:= apply2(get(car x,'difference), apply1(get(car x,'i2d),0), x)>>; % Now check for a global field mode, a leading domain coeff % with field properties or "unit" properties so we can adjust % numr and denr. The tests are done in the following order % since the other order will give wrong results with some % polynomials with decimal coefficients in dmode :gi:. return if not numberp x and (y := get(dmode!*,'unitsfn)) then apply2(y,u,x) else if flagp(dmode!*,'field) or not atom x and flagp(car x,'field) then fieldconv(x,u) else u end; symbolic procedure fieldconv(x,u); % U is a standard quotient and x the leading numerical coefficient % of the denominator. Returns inverse(x)*numr u/denr u. % X is a domain, but d may not be; dmode!* or x is field. begin scalar n,d,y; n := numr u; d := denr u; if null dmode!* then <<if not eqcar(x,'!:rn!:) then if (y := get(car x,'!:rn!:)) and atom y then x := apply1(y,x) else if get(car x,'quotient) then <<x := dcombine(1,x,'quotient); return multd(x,numr u) ./ multd(x,denr u)>> else errach list("field conversion",x); x := (car x) . (cddr x) . cadr x; return simpgd if domainp d then multd(x,n) ./ 1 else multd(x,n) ./ multd(x,d)>>; return if domainp d then divd(n,d) ./ 1 else divd(n,x) ./ divd(d,x) end; symbolic procedure simpgd u; if null flagp(dmode!*,'field) then u else begin scalar x; if (x := gcdf(numr u,denr u)) neq 1 then u := quotf(numr u,x) ./ quotf(denr u,x); return u end; symbolic procedure lnc u; % U is a standard form. Value is the leading numerical coefficient. if null u then 0 else if domainp u then u else lnc lc u; symbolic procedure invsq u; begin if null numr u then rerror(poly,3,"Zero divisor"); u := revpr u; if !*rationalize then u := gcdchk u; % Since result may not be in lowest terms. return canonsq u end; symbolic procedure gcdchk u; % Makes sure standard quotient u is in lowest terms. (if x neq 1 then quotf(numr u,x) ./ quotf(denr u,x) else u) where x = gcdf(numr u,denr u); endmodule; module quotfx; % Author: Herbert Melenk. Comment in many calls to QUOTF, the result is not checked for NIL because the caller is sure there will be no remainder, e.g. if the divisor is a gcd. This occurs not only at several places in the REDUCE kernel, but especially in Groebner, which simplifies polynomials with parameters by dividing out their contents. In all those cases, QUOTF computes too much: if you divide P= p_n x^n + p_n-1 x^(n-1) + ... Q= q_m x^m + q_m-1 x^(m-1) + ... (the coefficients may be polynomials in other variables) the result comes only from the first k=(n-m+1) coefficients of P. The remaining terms only have influence on the potential remainder. So it is not necessary to execute the subtractions completely if we don't need the remainder (or test for its absence). You can stop after the the power x^(n-k) in P and x^(m-k) in Q, and in the loop n down to m you can stop in Q again at each step depending on the actual k. The method is a polynomial extension of Jebelean's method for dividing bignums where you know in advance they have no remainder. The resulting code is a modification of the standard QUOTF code in polrep; symbolic procedure quotfx(u,v); if null !*exp or null !*mcd then quotf(u,v) else quotfx1(u,v); symbolic procedure quotfx1(p,q); % P and Q are standard forms where Q divides P without remainder. % Value is the quotient of P and Q. if null p then quotfxerr(p,q) else if p=q then 1 else if q=1 then p else if domainp q then quotfdx(p,q) else if domainp p then quotfxerr(p,q) else if mvar p eq mvar q then begin scalar f,dp,dq,u,v,w,x,y,z; integer n; w := mvar q; dq:=ldeg q; a: if (dp:=ldeg p) <dq then return quotfxerr(p,q); u := lt!* p; v := lt!* q; w := mvar q; x := quotfx1(tc u,tc v); n := dp #- dq; if n=0 then return rnconc(z,x); y := w .** n; if null f then p := cutf(p,w,dp #- n #- 1); f:=t; q:=cutf(q,w,dq #- n #- 1); p := addf(p,multf(if n=0 then q else multpf(y,q),negf x)); if p and (domainp p or not(mvar p eq w)) then return quotfxerr(p,q); z := aconc!*(z,y .* x); if null p then return z; go to a end else if ordop(mvar p,mvar q) then quotkx(p,q) else quotfxerr(p,q); symbolic procedure quotkx(p,q); (if w then if null red p then list(lpow p .* w) else (if y then lpow p .* w .+ y else nil) where y=quotfx1(red p,q) else nil) where w=quotfx1(lc p,q); symbolic procedure quotfdx(p,q); if p=q then 1 else if flagp(dmode!*,'field) then divd(p,q) else if domainp p then quotdd(p,q) else quotkx(p,q); symbolic procedure quotfxerr(u,v); rederr("exact division failed"); symbolic procedure cutf(u,x,n); % U is a standard form. Delete the terms with a degree in x below n. if n #< 1 then u else cutf1(u,x,n); symbolic procedure cutf1(u,x,n); if domainp u or mvar u neq x or ldeg u #< n then nil else lt u .+ cutf1(red u,x,n); endmodule; module gcd; % Greatest common divisor routines. % Author: Anthony C. Hearn. % Copyright (c) 1987 The RAND Corporation. All rights reserved. fluid '(!*exp !*ezgcd !*gcd !*heugcd !*mcd asymplis!* dmode!*); switch ezgcd,heugcd; symbolic procedure comfac p; % P is a non-atomic standard form. % CAR of result is lowest common power of leading kernel in % every term in P (or NIL). CDR is gcd of all coefficients of % powers of leading kernel. % If field elements are involved, lnc is normalized to 1. % We need GCDF here since the same function is used by EZGCD. begin scalar x,y; if flagp(dmode!*,'field) and ((x := lnc p) neq 1) then p := multd(!:recip x,p); if null red p then return lt p; x := lc p; y := mvar p; a: p := red p; if degr(p,y)=0 then return nil . gcdf(x,p) else if null red p then return lpow p . gcdf(x,lc p) else x := gcdf(lc p,x); go to a end; symbolic procedure degr(u,var); if domainp u or not(mvar u eq var) then 0 else ldeg u; put('gcd,'polyfn,'gcdf!*); put('gcd,'number!-of!-args,2); symbolic procedure gcdf!*(u,v); begin scalar !*gcd; !*gcd := t; return gcdf(u,v) end; symbolic procedure gcdf(u,v); %U and V are standard forms. %Value is the gcd of U and V, complete only if *GCD is true; begin scalar !*exp; % The next line was to prevent numerators moving to denominators % as in weight x=1,y=2$ wtlevel 4$ wtest:=(z^4-z^3*y-z^3*x+z^2*y^2 % +2*z^2*x*y+z^2*x^2-3*z*x^2*y-z*x^3+x^4)/z^5; wtest where z=>a; % However, the results are formally correct without it, and it % causes other problems. % if wtl!* then return 1; !*exp := t; u := if domainp u or domainp v or not !*ezgcd or free!-powerp u or free!-powerp v then gcdf1(u,v) else ezgcdf(u,v); return if minusf u then negf u else u end; symbolic procedure free!-powerp u; not domainp u and (not fixp ldeg u or free!-powerp lc u or free!-powerp red u); symbolic procedure gcdf1(u,v); begin scalar w; if null u then return v else if null v then return u else if u=1 or v=1 then return 1 else if domainp u then return gcdfd(u,v) else if domainp v then return gcdfd(v,u) else if not num!-exponents u or not num!-exponents v then 1 else if quotf1(u,v) then return v else if quotf1(v,u) then return u; w := gcdf2(u,v); if !*gcd and not(dmode!* memq '(!:rd!: !:cr!:)) and (null quotf1(u,w) or null quotf1(v,w)) then errach list("gcdf failed",prepf u,prepf v); % This probably implies that integer overflow occurred. return w end; symbolic procedure gcdf2(u,v); % U and V are both non-trivial forms. Value is their GCD. % We need to rebind asymplis!* to avoid setting higher powers to 0. begin scalar asymplis!*,w,z; if not num!-exponents u or not num!-exponents v then return 1; if !*gcd and length(w := kernord(u,v))>1 then <<w := list setkorder w; % List used to make sure non-NIL u := reorder u; v := reorder v>> else w := nil; % Things can go wrong with noncom oprs. However, empirically we % only need to make sure v does not have a leading noncom opr. if noncomp mvar v then z := 1 else if mvar u eq mvar v then begin scalar x,y; x := comfac u; y := comfac v; z := gcdf1(cdr x,cdr y); u := quotf1(u,comfac!-to!-poly x); v := quotf1(v,comfac!-to!-poly y); if !*gcd then z := multf(gcdk(u,v),z) else if v and quotf1(u,v) then z := multf(v,z) else if u and quotf1(v,u) then z := multf(u,z); if car x and car y then if pdeg car x>pdeg car y then z := multpf(car y,z) else z := multpf(car x,z) end else if ordop(mvar u,mvar v) then z := gcdf1(cdr comfac u,v) else z := gcdf1(cdr comfac v,u); if w then <<setkorder car w; z := reorder z>>; return z end; symbolic procedure num!-exponents u; % check that all exponents are integers (this may not be true in % rules). domainp u or fixp ldeg u and num!-exponents lc u and num!-exponents red u; symbolic procedure gcdfd(u,v); % U is a domain element, V a form. % Value is gcd of U and V. % if not atom u and flagp(car u,'field) then 1 else gcdfd1(u,v); if flagp(dmode!*,'field) then 1 else gcdfd1(u,v); symbolic procedure gcdfd1(u,v); if null v then u else if domainp v then gcddd(u,v) else gcdfd1(gcdfd1(u,lc v),red v); symbolic procedure gcddd(u,v); %U and V are domain elements. If they are invertable, value is 1 %otherwise the gcd of U and V as a domain element; if u=1 or v=1 then 1 % else if atom u and atom v then gcdn(u,v) else if atom u then if atom v then gcdn(u,v) else if fieldp v then 1 else dcombine(u,v,'gcd) else if atom v then if flagp(car u,'field) then 1 else dcombine(u,v,'gcd) else if flagp(car u,'field) or flagp(car v,'field) then 1 else dcombine(u,v,'gcd); symbolic procedure gcdk(u,v); % U and V are primitive polynomials in the main variable VAR. % Result is gcd of U and V. begin scalar lclst,var,w,x; if u=v then return u else if domainp u or degr(v,(var := mvar u))=0 then return 1 else if ldeg u<ldeg v then <<w := u; u := v; v := w>>; if quotf1(u,v) then return v else if !*heugcd and (x := heu!-gcd(u,v)) then return x % else if flagp(dmode!*,'field) then return 1 % otherwise problems arise. else if ldeg v=1 or getd 'modular!-multicheck and modular!-multicheck(u,v,var) or not !*mcd then return 1; a: w := remk(u,v); if null w then return v else if degr(w,var)=0 then return 1; lclst := addlc(v,lclst); if x := quotf1(w,lc w) then w := x else for each y in lclst do if atom y or not % prevent endless loop in !:gi!: dmode. (domainp y and (x := get(car y,'units)) and y member (for each z in x collect car z)) then while (x := quotf1(w,y)) do w := x; u := v; v := prim!-part w; if degr(v,var)=0 then return 1 else go to a end; symbolic procedure addlc(u,v); if u=1 then v else (lambda x; if x=1 or x=-1 or not atom x and flagp(car x,'field) then v else x . v) lc u; symbolic procedure delallasc(u,v); if null v then nil else if u eq caar v then delallasc(u,cdr v) else car v . delallasc(u,cdr v); symbolic procedure kernord(u,v); <<u := kernord!-split(u,v); append(kernord!-sort car u,kernord!-sort cdr u)>>; symbolic procedure kernord!-split(u,v); % splits U and V into a set of powers of those kernels occurring in % one form and not the other, and those occurring in both; begin scalar x,y; u := powers u; v := powers v; for each j in u do if assoc(car j,v) then y := j . y else x := j . x; for each j in v do if assoc(car j,u) then y := j . y else x := j . x; return reversip x . reversip y end; symbolic procedure kernord!-sort u; % returns list of kernels ordered so that kernel with lowest maximum % power in U (a list of powers) is first, and so on; begin scalar x,y; while u do <<x := maxdeg(cdr u,car u); u := delallasc(car x,u); y := car x . y>>; return y end; symbolic procedure maxdeg(u,v); if null u then v else if cdar u>cdr v then maxdeg(cdr u,car u) else maxdeg(cdr u,v); symbolic procedure powers form; % returns a list of the maximum powers of each kernel in FORM. % order tends to be opposite to original order. powers0(form,nil); symbolic procedure powers0(form,powlst); if null form or domainp form then powlst else begin scalar x; if (x := atsoc(mvar form,powlst)) % then ldeg form>cdr x and rplacd(x,ldeg form) then (if ldeg form>cdr x then powlst := repasc(mvar form,ldeg form,powlst)) else powlst := (mvar form . ldeg form) . powlst; return powers0(red form,powers0(lc form,powlst)) end; put('lcm,'polyfn,'lcm!*); put('lcm,'number!-of!-args,2); symbolic procedure lcm!*(u,v); begin scalar !*gcd; !*gcd := t; return lcm(u,v) end; symbolic procedure lcm(u,v); %U and V are standard forms. Value is lcm of U and V; if null u or null v then nil else if u=1 then v % ONEP else if v=1 then u % ONEP else multf(u,quotf(v,gcdf(u,v))); symbolic procedure remk(u,v); %modified pseudo-remainder algorithm %U and V are polynomials, value is modified prem of U and V; begin scalar f1,var,x; integer k,n; f1 := lc v; var := mvar v; n := ldeg v; while (k := degr(u,var)-n)>=0 do <<x := negf multf(lc u,red v); if k>0 then x := multpf(var .** k,x); u := addf(multf(f1,red u),x)>>; return u end; symbolic procedure prim!-part u; %returns the primitive part of the polynomial U wrt leading var; quotf1(u,comfac!-to!-poly comfac u); symbolic procedure comfac!-to!-poly u; if null car u then cdr u else list u; endmodule; module exptf; % Functions for raising canonical forms to a power. % Author: Anthony C. Hearn. % Copyright (c) 1990 The RAND Corporation. All rights reserved. fluid '(!*exp); symbolic procedure exptsq(u,n); begin scalar x; if n=1 then return u else if n=0 then return if null numr u then rerror(poly,4," 0**0 formed") else 1 ./ 1 else if null numr u then return u else if n<0 then return simpexpt list(mk!*sq u,n) else if null !*exp then return mksfpf(numr u,n) ./ mksfpf(denr u,n) else if kernp u then return mksq(mvar numr u,n) else if domainp numr u then return multsq(!:expt(numr u,n) ./ 1, 1 ./ exptf(denr u,n)) else if denr u=1 then return exptf(numr u,n) ./ 1; x := u; % while (n := n-1)>0 do x := multsq(u,x); % Since U is in lowest terms, then so is U^N. while (n := n-1)>0 do x := multf(numr u,numr x) ./ multf(denr u,denr x); % We need canonsq for a:=1+x/2; let x^2=0; a^2; return canonsq x end; symbolic procedure exptf(u,n); if domainp u then !:expt(u,n) else if !*exp or kernlp u then exptf1(u,n) else mksfpf(u,n); symbolic procedure exptf1(u,n); % Iterative multiplication seems to be faster than a binary sub- % division algorithm, probably because multiplying a small polynomial % by a large one is cheaper than multiplying two medium sized ones. if n=0 then 1 else begin scalar x; x := u; while (n := n-1)>0 do x := multf(u,x); return x end; symbolic procedure exptf2(u,n); % Binary version of EXPTF1, Used with EXP off, since expressions % formed in that case tend to be smaller than with EXP on. if n=0 then 1 else begin scalar x; integer m; x := 1; a: m := n; if m-2*(n := n/2) neq 0 then x := multf(u,x); if n=0 then return x; u := multf(u,u); go to a end; endmodule; module kernel; % Functions for operations on kernels. % Author: Anthony C. Hearn. % Copyright (c) 1990 The RAND Corporation. All rights reserved. global '(exlist!* kprops!*); symbolic procedure fkern u; % Finds the unique "p-list" reference to the kernel U. The choice of % the search and merge used here has a strong influence on some % timings. The ordered list used here is also used by prepsq* to % order factors in printed output, so cannot be unilaterally changed. begin scalar x,y; if atom u then return list(u,nil) else if x := get(car u,'fkernfn) then return apply1(x,u); y := if atom car u then get(car u,'klist) else exlist!*; if not (x := assoc(u,y)) then <<x := list(u,nil); y := ordad(x,y); if atom car u then <<kprops!* := union(list car u,kprops!*); put(car u,'klist,y)>> else exlist!* := y>>; return x end; symbolic procedure kernels u; % Returns list of kernels in standard form u. kernels1(u,nil); symbolic procedure kernels1(u,v); % We append to end of list to put kernels in the right order, even % though a cons on the front of the list would be faster. if domainp u then v else kernels1(lc u, kernels1(red u, if x memq v then v else append(v,list x))) where x=mvar u; symbolic procedure kernp u; % True if U is standard quotient representation for a kernel. denr u=1 and not domainp(u := numr u) and null red u and lc u=1 and ldeg u=1; % onep endmodule; module mksp; % Functions for making standard powers. % Author: Anthony C. Hearn. % Copyright (c) 1991 RAND. All rights reserved. % This module has a non-trivial use of ACONC. fluid '(!*nosubs !*sub2 asymplis!* subfg!* wtl!*); % fluid '(varstack!*); global '(!*resubs powlis!*); % exports mksfpf,mksp,mksq,to; % imports !*p2f,aconc,eqcar,exptf,exptsq,leq,mkprod!*,module,multsq, % ordad,over,simpcar,union; symbolic procedure getpower(u,n); %U is a list (<kernel> . <properties>), N a positive integer. %Value is the standard power of U**N; <<if eqcar(car u,'expt) and n>1 then !*sub2 := t; car u . n>>; % begin scalar v; % v := cadr u; % if null v then return caar rplaca(cdr u,list (car u . n)); % a: if n=cdar v then return car v % else if n<cdar v % then return car rplacw(v,(caar v . n) . (car v . cdr v)) % else if null cdr v % then return cadr rplacd(v,list (caar v . n)); % v := cdr v; % go to a % end; symbolic procedure mksp(u,p); %U is a (non-unique) kernel and P a non-zero integer %Value is the standard power for U**P; getpower(fkern u,p); symbolic procedure u to p; %U is a (unique) kernel and P a non-zero integer; %Value is the standard power of U**P; u . p; % getpower(fkern u,p); symbolic procedure mksp!*(u,n); % Returns a standard form for U**N. If U is a kernel product, % direct exponentiation is used. Otherwise, U is first made % positive and then converted into a kernel. begin scalar b; if null u or kernlp u then return exptf(u,n) else if minusf u then <<b := t; u := negf u>>; u := !*p2f mksp(u,n); return if b and not evenp n then negf u else u end; symbolic procedure mksfpf(u,n); % Raises form U to power N with EXP off. Returns a form. % If we assume that MKPROD returns a kernlp form, check for red x % is redundant. (if n=1 then x else if domainp x then !:expt(x,n) else if n>=0 and onep lc x and null red x then !*p2f mksp(mvar x,ldeg x*n) else exptf2(x,n)) where x=mkprod u; symbolic procedure mksq(u,n); % U is a kernel, N a non-zero integer. % Value is a standard quotient of U**N, after making any % possible substitutions for U. begin scalar x,y,z; % (begin scalar x,y,z; if null subfg!* then go to a1 else if (y := assoc(u,wtl!*)) and null car(y := mksq('k!*,n*cdr y)) then return y else if not atom u then go to b else if null !*nosubs and (z:= get(u,'avalue)) then go to c; if idp u then flag(list u,'used!*); %tell system U used as algebraic var (unless it's a string); a: if !*nosubs or n=1 then go to a1 else if (z:= assoc(u,asymplis!*)) and cdr z<=n then return nil ./ 1 else if ((z:= assoc(u,powlis!*)) or not atom u and car u memq '(expt sqrt) and (z := assoc(cadr u,powlis!*))) and not(n*cadr z<0) % Implements explicit sign matching. then !*sub2 := t; a1: if null x then x := fkern u; x := !*p2f getpower(x,n) ./ 1; return if y then multsq(y,x) else x; b: if null !*nosubs and atom car u and ((z := get(car u,'mksqsubfn)) and (z := apply1(z,u)) or (z:= assoc(u,get(car u,'kvalue)))) then go to c else if not('used!* memq cddr (x := fkern u)) then aconc(x,'used!*); go to a; c: z := cdr z; % varstack!* := u . varstack!*; % I don't think this is needed. %optimization is possible as shown if all expression %dependency is known; %if cdr z then return exptsq(cdr z,n); % Value already computed. if null !*resubs then !*nosubs := t; x := simpcar z; !*nosubs := nil; %rplacd(z,x); % Save simplified value. %subl!* := z . subl!*; return exptsq(x,n) end; % end) where varstack!* := varstack!*; % I don't think this is needed. endmodule; module reord; % Functions for reordering standard forms. % Author: Anthony C. Hearn. % Copyright (c) 1990 The RAND Corporation. All rights reserved. fluid '(alglist!* kord!* ncmp!*); alglist!* := nil . nil; % This is first module that uses this. symbolic procedure reordsq u; % Reorders a standard quotient so that current kernel order is used. reorder numr u ./ reorder denr u; symbolic procedure reorder u; % Reorders a standard form so that current kernel order is used. % Note: this version does not reorder any sfs used as kernels. if domainp u then u else raddf(rmultpf(lpow u,reorder lc u),reorder red u); symbolic procedure raddf(u,v); % Adds reordered forms U and V. if null u then v else if null v then u else if domainp u then addd(u,v) else if domainp v then addd(v,u) else if peq(lpow u,lpow v) then (lpow u .* raddf(lc u,lc v)) .+ raddf(red u,red v) else if ordpp(lpow u,lpow v) then lt u . raddf(red u,v) else lt v . raddf(u,red v); symbolic procedure rmultpf(u,v); % Multiplies power U by reordered form V. if null v then nil else if domainp v or reordop(car u,mvar v) then !*t2f(u .* v) else (lpow v .* rmultpf(u,lc v)) .+ rmultpf(u,red v); symbolic procedure reordop(u,v); if ncmp!* and noncomp u and noncomp v then t else ordop(u,v); symbolic procedure kernel!-list u; % Converts u to a list of kernels, expanding lists in u. for each x in u join <<x:=reval x; if eqcar(x,'list) then kernel!-list cdr x else {!*a2k x}>>; symbolic procedure korder u; <<kord!* := if u = '(nil) then nil else kernel!-list u; rmsubs()>>; rlistat '(korder); symbolic procedure setkorder u; begin scalar v; v := kord!*; if u=v then return v; kord!* := u; alglist!* := nil . nil; % Since kernel order has changed. return v end; symbolic procedure updkorder u; % U is a kernel. Value is previous kernel order. % This function is used when it is necessary to give one kernel % highest precedence (e.g., when extracting coefficients), but not % change the order of the other kernels. begin scalar v,w; v := kord!*; w := u . delete(u,v); if v=w then return v; kord!* := w; alglist!* := nil . nil; % Since kernel order has changed. return v end; endmodule; module dmode; % Functions for defining and using poly domain modes. % Author: Anthony C. Hearn. % Modifications by: Stanley L. Kameny. % Copyright (c) 1992 RAND. All rights reserved. Comment *** Description of Definition Requirements for Domain arithmetics *** Syntactically, such elements have the following form: <domain element>:=NIL|integer|<structured domain element> <structured domain element> ::= (<domain identifier>.<domain structure>), where NIL represents the domain element zero. To introduce a new domain, we need to define: 1) A conversion function from integer to the given mode, stored under the attribute I2D. 2) A conversion function from new mode to or from every other mode. 3) Particular instances of the binary operations +,- and * for this mode. 4) Particular instances of ZEROP, ONEP and MINUSP for this mode. Although ONEP could be defined in terms of ZEROP, we believe it is more efficient to have both functions (though this has not been thoroughly tested). 5) If domain is a field, a quotient must be defined. If domain is a ring, a gcd and divide must be defined, and also a quotient function which returns NIL if the division fails. 6) A printing function for this mode that can print the object in a linear form. The printing function is associated with the attribute PRIFN. This printing function should enclose the printed expression in parentheses if its top level operator has a precedence greater than +. 7) A function to convert structure to an appropriate prefix form. 8) A reading function for this mode. 9) A DNAME property for the tag, and a TAG property for the DNAME 10) Optionally, an exponentiation function. If this is not provided, repeated squaring is used (cf !:expt in dmodeop.red) To facilitate this, all such modes should be listed in the global variable DOMAINLIST!*. The following rules should also be followed when introducing new domains: Some modes, such as modular arithmetic, require that integers be converted to domain elements when input or addition or multiplication of such objects occurs. Such modes should be flagged "convert". A domain which holds mutable internal state should be flagged "resimplify" (no Reduce domains are currently so flagged) which means that attempts to simplify domain elements will actually do so, rather than just thinking "domain elements are always simplified". In ALL cases it is assumed that any domain element that tests true to the zero test can be converted into an explicit 0 (represented by NIL), and any that tests true to the onep test can be converted into an explicit 1. If the domain allows for the conversion of other elements into equivalent integers, a function under the optional attribute INTEQUIVFN may also be defined to effect this conversion. The result of an arithmetic (as opposed to a boolean) operation on structured domain elements with the same tag must be another structured domain element with the same tag. In particular, a domain zero must be returned as a tagged zero in that domain. In some cases, it is possible to map functions on domain elements to domain elements. To provide for this capability in the complete system, one can give such functions the domain tag as an indicator. The results of this evaluation must be a tagged domain element (or an integer?), but not necessarily an element from the same domain, or the evaluation should abort with an error. The error number associated with this should be in the range 100-150; fluid '(!*complex dmode!* gdmode!*); global '(domainlist!*); symbolic procedure initdmode u; % Checks that U is a valid domain mode, and sets up appropriate % interfaces to the system. begin dmodechk u; put(u,'simpfg,list(list(t,list('setdmode,mkquote u,t)), list(nil,list('setdmode,mkquote u,nil)))) end; % switch complex!-rational,complex!-rounded; symbolic procedure setdmode(u,bool); % Sets polynomial domain mode. If bool is NIL, integers are used, % or in the case of complex, set to the lower domain. % Otherwise mode is set to u, or derived from it. begin scalar x; if (x := get(u,'dname)) then u := x; % Allow a tag as argument. if u eq 'complex!-rational then <<if (x := dmode!*) then x := get(x,'dname); onoff('complex,bool); onoff('rational,bool); return x>> else if u eq 'complex!-rounded then <<if (x := dmode!*) then x := get(x,'dname); onoff('complex,bool); onoff('rounded,bool); return x>>; if null get(u,'tag) then rerror(poly,5, list("Domain mode error:",u,"is not a domain mode")); if x := get(u,'package!-name) then load!-package x; return if u eq 'complex or !*complex then setcmpxmode(u,bool) else setdmode1(u,bool) end; symbolic procedure setdmode1(u,bool); begin scalar x,y,z; x := get(u,'tag); y := dmode!*; if null bool then return if null y then nil else if u eq (y := get(y,'dname)) then <<rmsubs(); gdmode!* := dmode!* := nil; y>> else offmoderr(u,y) else <<if u memq '(rounded complex!-rounded) then !!mfefix(); if x eq y then return x>>; % Now make sure there are no other domain switches left on. if not (z := get(x,'realtype)) then z := x; for each j in domainlist!* do if j neq '!:gi!: and not(j eq z) then set(intern compress append(explode '!*,explode get(j,'dname)), nil); rmsubs(); y := get(y,'dname); if y then lprim list("Domain mode",y,"changed to",u); gdmode!* := dmode!* := x; return y end; symbolic procedure offmoderr(u,y); lpriw("***",list("Failed attempt to turn off",u,"when",y,"is on")); symbolic procedure dmodechk u; % Checks to see if U has complete specification for a domain mode. begin scalar z; if not(z := get(u,'tag)) then rerror(poly,6,list("Domain mode error:","No tag for",u)) else if not(get(z,'dname) eq u) then rerror(poly,7,list("Domain mode error:", "Inconsistent or missing DNAME for",z)) else if not(z memq domainlist!*) then rerror(poly,8,list("Domain mode error:", z,"not on domain list")); u := z; for each x in domainlist!* do if u=x then nil else <<if not get(u,x) then put(u,x,mkdmoderr(u,x)); if not get(x,u) then put(x,u,mkdmoderr(x,u))>>; % then rederr list("Domain mode error:", % "No conversion defined between",U,"and",X); z := '(plus difference times quotient i2d prepfn prifn minusp onep zerop); if not flagp(u,'field) then z := 'divide . 'gcd . z; for each x in z do if not get(u,x) then rerror(poly,9,list("Domain mode error:", x,"is not defined for",u)) end; symbolic procedure dmoderr(u,v); rerror(poly,10,list("Conversion between",get(u,'dname), "and",get(v,'dname),"not defined")); symbolic procedure mkdmoderr(u,v); list('lambda,'(!*x!*),list('dmoderr,mkquote u,mkquote v)); endmodule; module dmodeop; % Generic operators for domain arithmetic. % Author: Anthony C. Hearn. % Copyright (c) 1991 The RAND Corporation. All rights reserved. % internal dividef; fluid '(!*noequiv); % !*convert % switch convert; % !*convert := t; symbolic procedure !:difference(u,v); if null u then !:minus v else if null v then u else if u=v then nil else if atom u and atom v then u-v else dcombine(u,v,'difference); symbolic procedure !:divide(u,v); % Returns a dotted pair of quotient and remainder of non-invertable % domain element U divided by non-invertable domain element V. % Note that a zero is returned as NIL. if null u then nil . nil else if null v then rerror(poly,202,"zero divisor") else if atom u and atom v then dividef(u,v) else dcombine(u,v,'divide); symbolic procedure dividef(m,n); ((if car x=0 then nil else car x) . if cdr x=0 then nil else cdr x) where x=divide(m,n); symbolic procedure !:expt(u,n); % Raises domain element U to integer power N. Value is a domain % element. if null u then if n=0 then rerror(poly,11,"0/0 formed") else nil else if n=0 then 1 else if n=1 then u else if u=1 then 1 else if n<0 then !:recip !:expt(if not fieldp u then mkratnum u else u,-n) else if atom u then u**n % Moved into the exponentiation method of !:mod!: % else if car u eq '!:mod!: % then (lambda x; if x=0 then nil else if x=1 then 1 else car u . x) % general!-modular!-expt(cdr u,n) else begin scalar v,w,x; if x := get(car u,'expt) then return apply2(x,u,n); % There was a special exponentiation method. v := apply1(get(car u,'i2d),1); % unit element. x := get(car u,'times); a: w := n; if w-2*(n := n/2) neq 0 then v := apply2(x,u,v); if n=0 then return v; u := apply2(x,u,u); go to a end; symbolic procedure !:gcd(u,v); if null u then v else if null v then u else if atom u and atom v then gcdn(u,v) else if fieldp u or fieldp v then 1 else dcombine(u,v,'gcd); % symbolic procedure !:i2d u; symbolic procedure !:minus u; % U is a domain element. Value is -U. if null u then nil else if atom u then -u else (if x then apply1(x,u) else dcombine(u,-1,'times)) where x=get(car u,'minus); symbolic procedure !:minusp u; if atom u then minusp u else apply1(get(car u,'minusp),u); symbolic procedure !:onep u; if atom u then onep u else apply1(get(car u,'onep),u); symbolic procedure !:plus(u,v); if null u then v else if null v then u else if atom u and atom v then (if w=0 then nil else w) where w=u+v else dcombine(u,v,'plus); % symbolic procedure !:prep u; % symbolic procedure !:print u; symbolic procedure !:quotient(u,v); if null u or u=0 then nil else if null v or v=0 then rerror(poly,12,"Zero divisor") else if atom u and atom v % We might also check that remainder is zero in integer case. then if null dmode!* then u/v else dcombine(u,!:recip v,'times) else dcombine(u,v,'quotient); symbolic procedure !:recip u; % U is an invertable domain element. Value is 1/U. begin if numberp u then if abs u=1 then return u else if null dmode!* or dmode!* memq '(!:rd!: !:cr!:) then return !:rn2rd mkrn(1,u) else u := apply1(get(dmode!*,'i2d),u); return (if not atom x and car x='!:rn!: then !:rn2rd x else x) where x=dcombine(1,u,'quotient) end; symbolic procedure !:rn2rd x; % Convert rn to rd in dmodes rd and cr if roundall is on. if !*roundall and !*rounded then !*rn2rd x else x; symbolic procedure !:times(u,v); % We assume neither u nor v can be 0. if null u or null v then nil else if atom u and atom v then u*v else dcombine(u,v,'times); symbolic procedure !:zerop u; if null u or u=0 then t else if atom u then nil else apply1(get(car u,'zerop),u); symbolic procedure fieldp u; % U is a domain element. Value is T if U is invertable, NIL % otherwise. not atom u and flagp(car u,'field); symbolic procedure gettransferfn(u,v); % This may be unnecessary. If dmodechk has been called, then all % transfer functions should be defined. (if x then x else dmoderr(u,v)) where x=get(u,v); symbolic procedure dcombine(u,v,fn); % U and V are domain elements, but not both atoms (integers). % FN is a binary function on domain elements; % Value is the domain element representing FN(U,V) % or pair of domain elements representing divide(u,v). % If dmode!* is other than rd or cr, output mode eq dmode!*. <<u := if atom u then apply2(get(car v,fn),apply1(get(car v,'i2d),u),v) else if atom v then apply2(get(car u,fn),u,apply1(get(car u,'i2d),v)) else if car u eq car v then apply2(get(car u,fn),u,v) else % convert anything to :ps: but not the reverse; % convert real to complex, never the reverse; % also convert rn or crn to rd or cr but not the reverse: % hence crn or gi plus rd requires that *both* convert to cr. (<<if (not(x and atom x) or get(du,'cmpxfn) and not get(dv,'cmpxfn) or du memq dl and not(dv memq dl)) and not flagp(dv,'noconvert) then % convert v -> u but may first have to convert u. <<if du memq dml and dv eq '!:rd!: or du eq '!:rd!: and dv memq dml then <<u := apply1(get(du,'!:cr!:),u); du := '!:cr!:>> else if du eq '!:rn!: and dv eq '!:gi!: or du eq '!:gi!: and dv eq '!:rn!: then <<u := apply1(get(du,'!:crn!:),u); du := '!:crn!:>>; v := apply1(get(dv,du),v); x := get(du,fn)>> else <<u := apply1(x,u); x := get(dv,fn)>>; apply2(x,u,v)>> where x=get(du,dv),dml='(!:crn!: !:gi!:),dl='(!:rd!: !:cr!:)) where du=car u,dv=car v; if !*rounded and !*roundall then int!-equiv!-chk if (v := car u) eq '!:rn!: and cddr u neq 1 then !*rn2rd u else if v eq '!:crn!: and (cdadr u neq 1 or cdddr u neq 1) then !*crn2cr u else u else if fn eq 'divide then % Modified by Francis Wright. int!-equiv!-chk car u . int!-equiv!-chk cdr u else int!-equiv!-chk u>>; symbolic procedure int!-equiv!-chk u; % U is a domain element. If U can be converted to 0, result is NIL, % if U can be converted to 1, result is 1, % if U is a rational or a complex rational and can be converted to % an integer, result is that integer, % if *convert is on and U can be converted to an integer, result % is that integer. Otherwise, U is returned. % In most cases, U will be structured. if !*noequiv then u else begin scalar x; if atom u then return if u=0 then nil else u else if apply1(get(car u,'zerop),u) then return nil else if apply1(get(car u,'onep),u) then return 1 % else if null !*convert then return u else if (x := get(car u,'intequivfn)) and (x := apply1(x,u)) then return if x=0 then nil else x else return u end; % symbolic procedure minuschk u; % if eqcar(u,'minus) % and (numberp cadr u % or not atom cadr u and idp caadr u and get(caadr u,'dname)) % then !:minus cadr u % else u; endmodule; module rational; % *** Tables for rational numbers ***. % Author: Anthony C. Hearn. % Copyright (c) 1987 The RAND Corporation. All rights reserved. global '(domainlist!*); switch rational; domainlist!* := union('(!:rn!:),domainlist!*); put('rational,'tag,'!:rn!:); put('!:rn!:,'dname,'rational); flag('(!:rn!:),'field); put('!:rn!:,'i2d,'!*i2rn); put('!:rn!:,'!:ft!:,'!*rn2ft); put('!:rn!:,'minus,'rnminus!:); put('!:rn!:,'minusp,'rnminusp!:); put('!:rn!:,'plus,'rnplus!:); put('!:rn!:,'times,'rntimes!:); put('!:rn!:,'difference,'rndifference!:); put('!:rn!:,'quotient,'rnquotient!:); put('!:rn!:,'zerop,'rnzerop!:); put('!:rn!:,'onep,'rnonep!:); put('!:rn!:,'factorfn,'rnfactor!:); put('!:rn!:,'expt,'rnexpt!:); put('!:rn!:,'prepfn,'rnprep!:); put('!:rn!:,'prifn,'rnprin); put('!:rn!:,'intequivfn,'rnequiv); flag('(!:rn!:),'ratmode); symbolic procedure rnexpt!:(u,n); % U is a tagged rational number, n an integer. begin scalar v; if n=0 then return 1; v:=cdr u; if (n<0) then << n:=-n; if (car v < 0) then v:= (- cdr v) . (- car v) else v:= (cdr v) . (car v) >>; if (n=1) then return (car u) . v; return (car u) . ((car v ** n) . (cdr v ** n)); % No more cancellation can take place in this exponentiation. end; symbolic procedure mkratnum u; % U is a domain element. Value is equivalent real or complex % rational number. if atom u then !*i2rn u else if car u eq '!:gi!: then apply1(get('!:gi!:,'!:crn!:),u) else apply1(get(car u,'!:rn!:),u); symbolic procedure mkrn(u,v); %converts two integers U and V into a rational number, an integer %or NIL; if v<0 then mkrn(-u,-v) else (lambda m; '!:rn!: . ((u/m) . (v/m))) gcdn(u,v); symbolic procedure !*i2rn u; %converts integer U to rational number; '!:rn!: . (u . 1); symbolic procedure rnminus!: u; % We must allow for a rational with structured arguments, since % lowest-terms can produce such objects. car u . !:minus cadr u . cddr u; symbolic procedure rnminusp!: u; % We must allow for a rational with structured arguments, since % lowest-terms can produce such objects. if atom (u := cadr u) then u < 0 else apply1(get(car u,'minusp),u); symbolic procedure rnplus!:(u,v); mkrn(cadr u*cddr v+cddr u*cadr v,cddr u*cddr v); symbolic procedure rntimes!:(u,v); mkrn(cadr u*cadr v,cddr u*cddr v); symbolic procedure rndifference!:(u,v); mkrn(cadr u*cddr v-cddr u*cadr v,cddr u*cddr v); symbolic procedure rnquotient!:(u,v); mkrn(cadr u*cddr v,cddr u*cadr v); symbolic procedure rnzerop!: u; cadr u=0; symbolic procedure rnonep!: u; cadr u=1 and cddr u=1; symbolic procedure rnfactor!: u; begin scalar x,y,dmode!*; integer m,n; x := subf(u,nil); y := factorf numr x; n := car y; dmode!* := '!:rn!:; y := for each j in cdr y collect <<n := n*(m := (lnc ckrn car j)**cdr j); quotfd(car j,m) . cdr j>>; return int!-equiv!-chk mkrn(n,denr x) . y end; symbolic procedure rnprep!: u; % PREPF is called on arguments, since the LOWEST-TERMS code in extout % can create rational objects with structured arguments. (if cddr u=1 then x else list('quotient,x,prepf cddr u)) where x = prepf cadr u; symbolic procedure rnprin u; <<prin2!* cadr u; prin2!* "/"; prin2!* cddr u>>; symbolic procedure rnequiv u; % Returns an equivalent integer if possible. if cdr(u := cdr u)=1 then car u else nil; initdmode 'rational; endmodule; module rnelem; fluid '(!*rounded); % This module adds 10 integer functions to mode rational. deflist('((fix rnfix!*) (round rnround!*) (ceiling rnceiling!*) (floor rnfloor!*) % (isqrt rnisqrt!*) % (icbrt rnicbrt!*) (irootn rnirootn!*) (ilog2 rnilog2!*) (sgn rnsgn!*) (factorial rnfactorial!*) (perm rnperm!*) (choose rnchoose!*)) ,'!:rn!:); for each c in '(fix round ceiling floor % isqrt icbrt irootn ilog2 sgn factorial perm choose) do put(c,'simpfn,'simpiden); flag('(fix floor ceiling round isqrt icbrt irootn ilog2 factorial % sgn perm choose) ,'integer); deflist('((perm 2) (choose 2)),'number!-of!-args); symbolic procedure rnfix!* x; quotient(cadr x,cddr x); symbolic procedure rnfixchk x; (if cdr y=0 then car y else error(0,list(prepf x,"is not an integer equivalent"))) where y=divide(cadr x,cddr x); % symbolic procedure rnsgn!* x; sgn cadr x; symbolic procedure rnfloor!* x; if cdr(x := divide(cadr x,cddr x))<0 then car x-1 else car x; symbolic procedure rnceiling!* x; if cdr(x := divide(cadr x,cddr x))>0 then car x+1 else car x; symbolic procedure rnround!* x; (if cadr rndifference!:(x,!*i2rn y)=0 then y else if rnminusp!: x then -rnround!*('!:rn!: . ((-cadr x) . cddr x)) else rnfloor!*(rnplus!:(x,'!:rn!: . (1 . 2)))) where y=rnfix!* x; % symbolic procedure rnisqrt!* x; isqrt rnfix!* x; symbolic procedure rnilog2!* x; ilog2 rnfix!* x; symbolic procedure rnfactorial!* x; (if fixp y and not(y<0) then nfactorial y else !*p2f mksp(list('factorial,y),1)) where y=rnfixchk x; symbolic procedure rnperm!*(x,n); perm(rnfixchk x,rnfixchk n); symbolic procedure perm(x,n); if not fixp x or not fixp n or x<0 or x>n then terrlst(list(x,n),'perm) else for j := n-x+1:n product j; symbolic procedure rnchoose!*(x,n); choose(rnfixchk x,rnfixchk n); symbolic procedure choose(x,n); perm(x,n)/factorial x; symbolic procedure simprn x; begin scalar !*rounded,dmode!*; dmode!* := '!:rn!:; return for each a in simplist x collect if atom a then !*i2rn a else a end; % symbolic procedure rnicbrt!* x; icbrt rnfix!* x; symbolic procedure rnirootn!*(x,n); irootn(rnfix!* x,rnfixchk n); endmodule; module gint; % Support for gaussian integers (complex numbers). % Author: Eberhard Schruefer. global '(domainlist!*); fluid '(!*complex !*gcd); switch complex; domainlist!* := union('(!:gi!:),domainlist!*); symbolic procedure setcmpxmode(u,bool); % Sets polynomial domain mode in complex case. begin scalar x,y; x := get(u,'tag); if u eq 'complex then if null dmode!* then return if null bool then nil else <<put('i,'idvalfn,'mkdgi); setdmode1('complex,bool)>> else if null bool then return if null !*complex then nil else if get(dmode!*,'dname) eq 'complex then <<remprop('i,'idvalfn); setdmode1('complex,nil)>> else <<remprop('i,'idvalfn); setdmode1(get(get(dmode!*,'realtype),'dname), t)>> else if dmode!* eq '!:gi!: or get(dmode!*,'realtype) then return nil else if not (y := get(dmode!*,'cmpxtype)) then dmoderr(dmode!*,x) else <<put('i,'idvalfn,get(y,'ivalue)); return setdmode1(get(y,'dname),bool)>> else if null bool then if u eq (y := get(get(dmode!*,'realtype),'dname)) then <<put('i,'idvalfn,'mkdgi); return setdmode1('complex,t)>> else offmoderr(u,y) else <<u := get(u,'tag); y := get(u,'cmpxtype); if null y then dmoderr(u,'!:gi!:); put('i,'idvalfn,get(y,'ivalue)); return setdmode1(get(y,'dname),bool)>> end; % Used by gcdk. symbolic procedure intgcdd(u,v); if null u then v else if atom u then if atom v then gcdn(u,v) else gcdn(cadr v,gcdn(cddr v,u)) else if atom v then intgcdd(v,u) else intgcdd(cadr u,intgcdd(cddr u,v)); put('complex,'tag,'!:gi!:); put('!:gi!:,'dname,'complex); put('!:gi!:,'i2d,'!*i2gi); put('!:gi!:,'minusp,'giminusp!:); put('!:gi!:,'zerop,'gizerop!:); put('!:gi!:,'onep,'gionep!:); put('!:gi!:,'plus,'giplus!:); put('!:gi!:,'difference,'gidifference!:); put('!:gi!:,'times,'gitimes!:); put('!:gi!:,'quotient,'giquotient!:); put('!:gi!:,'divide,'gidivide!:); put('!:gi!:,'gcd,'gigcd!:); put('!:gi!:,'factorfn,'gifactor!:); % put('!:gi!:,'rationalizefn,'girationalize!:); put('!:gi!:,'prepfn,'giprep!:); put('!:gi!:,'intequivfn,'gintequiv!:); put('!:gi!:,'specprn,'giprn!:); put('!:gi!:,'prifn,'giprn!:); put('!:gi!:,'cmpxfn,'mkgi); put('!:gi!:,'unitsfn,'!:gi!:unitconv); symbolic procedure !:gi!:unitconv(u,v); unitconv(u,v,get('!:gi!:,'units)); put('!:gi!:,'units,'(((!:gi!: 0 . 1) . (!:gi!: 0 . -1)) ((!:gi!: 0 . -1) . (!:gi!: 0 . 1)))); symbolic procedure unitconv(u,v,w); begin scalar z; a: if null w then return u; z := quotf1(v,caar w); if null z or not fixp z then <<w := cdr w; go to a>>; z := multf(denr u,cdar w); w := multf(numr u,cdar w); if minusf z then <<w := negf w; z := negf z>>; return w ./ z end; symbolic procedure !*i2gi u; '!:gi!: . (u . 0); symbolic procedure giminusp!: u; %*** this is rather a test for u being in a canonical form! ***; if cadr u = 0 then minusp cddr u else minusp cadr u; symbolic procedure gizerop!: u; cadr u = 0 and cddr u = 0; symbolic procedure gionep!: u; cadr u=1 and cddr u=0; symbolic procedure gintequiv!: u; if cddr u=0 then cadr u else nil; symbolic procedure mkdgi u; ('!:gi!: . (0 . 1)) ./ 1; symbolic procedure mkgi(re,im); '!:gi!: . (re . im); symbolic procedure giplus!:(u,v); mkgi(cadr u+cadr v,cddr u+cddr v); symbolic procedure gidifference!:(u,v); mkgi(cadr u-cadr v,cddr u-cddr v); symbolic procedure gitimes!:(u,v); (lambda r1,i1,r2,i2; mkgi(r1*r2-i1*i2,r1*i2+r2*i1)) (cadr u,cddr u,cadr v,cddr v); symbolic procedure giquotient!:(u,v); begin integer r1,i1,r2,i2,d; scalar rr,ii; r1 := cadr u; i1 := cddr u; r2 := cadr v; i2 := cddr v; d := r2*r2+i2*i2; rr := divide(r1*r2+i1*i2,d); ii := divide(i1*r2-i2*r1,d); return if cdr ii=0 and cdr rr=0 then mkgi(car rr,car ii) else '!:gi!: . (0 . 0) end; symbolic procedure gidivide!:(u,v); begin integer r1,i1,r2,i2,d,rr,ir,rq,iq; r1 := cadr u; i1 := cddr u; r2 := cadr v; i2 := cddr v; d := r2*r2+i2*i2; rq := r1*r2+i1*i2; iq := i1*r2-i2*r1; rq := car divide(2*rq+if rq<0 then -d else d,2*d); iq := car divide(2*iq+if iq<0 then -d else d,2*d); rr := r1-(rq*r2-iq*i2); ir := i1-(iq*r2+rq*i2); return mkgi(rq,iq) . mkgi(rr,ir) end; symbolic procedure giremainder(u,v); begin integer r1,i1,r2,i2,d,rr,ir,rq,iq; r1 := cadr u; i1 := cddr u; r2 := cadr v; i2 := cddr v; d := r2*r2+i2*i2; rq := r1*r2+i1*i2; iq := i1*r2-i2*r1; rq := car divide(2*rq+if rq<0 then -d else d,2*d); iq := car divide(2*iq+if iq<0 then -d else d,2*d); rr := r1-(rq*r2-iq*i2); ir := i1-(iq*r2+rq*i2); return '!:gi!: . (rr . ir) end; symbolic procedure gigcd!:(u,v); % Straightforward Euclidean algorithm. if gizerop!: v then fqa u else gigcd!:(v,giremainder(u,v)); symbolic procedure fqa u; %calculates the unique first-quadrant associate of u; if cddr u=0 then abs cadr u else if cadr u=0 then '!:gi!: . (abs cddr u . 0) else if (cadr u*cddr u)>0 then '!:gi!: . (abs cadr u . abs cddr u) else '!:gi!: . (abs cddr u . abs cadr u); symbolic procedure gifactor!: u; % Trager's modified version of Van der Waerdens algorithm. begin scalar x,y,norm,aftrs,ftrs,mvu,dmode!*,!*exp,w,z,l,bool; integer s; !*exp := t; if realp u then u := cdr factorf u else u := list(u . 1); w := 1; for each f in u do begin u := car f; dmode!* := '!:gi!:; mvu := power!-sort powers u; bool := contains!-oddpower mvu; if realp u and bool then <<u := normalize!-lcgi u; w := multd(car u,w); aftrs := (cdr u . 1) . aftrs; return>>; mvu := caar mvu; y := u; go to b; a: l := list(mvu . prepf addf(!*k2f mvu,multd(s,!*k2f 'i))); u := numr subf1(y,l); b: if realp u then if bool then <<y := normalize!-lcgi y; w := multd(car y,w); aftrs := (cdr y . 1) . aftrs; return>> else <<s := s-1; go to a>>; norm := multf(u,conjgd u); if not sqfrp norm then <<s := s-1; go to a>>; dmode!* := nil; ftrs := factorf norm; dmode!* := '!:gi!:; if null cddr ftrs then <<y := normalize!-lcgi y; w := multd(car y,w); aftrs := (cdr y . 1) . aftrs; return>>; w := car ftrs; l := if s=0 then nil else list(mvu . prepf addf(!*k2f mvu, negf multd(s,!*k2f 'i))); for each j in cdr ftrs do <<x := gcdf!*(car j,u); u := quotf!*(u,x); z := if l then numr subf1(x,l) else x; z := normalize!-lcgi z; w := multd(car z,w); aftrs := (cdr z . 1) . aftrs>>; w := multf(u,w) end; return w . aftrs end; symbolic procedure normalize!-lcgi u; % Normalize lnc by using units as canonsq would do it. begin scalar l,x,y; l := lnc u; if numberp l then return if minusp l then (-1) . negf u else 1 . u; x := get('!:gi!:,'units); a: if null x then return 1 . u; y := quotf1(l,caar x); if null y or null fixp y then <<x := cdr x; go to a>>; u := multd(cdar x,u); return if minusf u then negf caar x . negf u else caar x . u end; symbolic procedure contains!-oddpower u; if null u then nil else if evenp cdar u then contains!-oddpower cdr u else t; symbolic procedure power!-sort u; begin scalar x,y; while u do <<x := maxdeg(cdr u,car u); u := delallasc(car x,u); y := x . y>>; return y end; symbolic procedure sqfrp u; % Squarefree test for poly u over the integers. It gives the user % control over which gcd to use, i.e. 'on ezgcd' has an effect. % Still needs changes to gcd and facform modules before to work. begin scalar dmode!*; return domainp gcdf!*(u,diff(u,mvar u)) end; symbolic procedure realp u; if domainp u then atom u or not get(car u,'cmpxfn) or cddr u = cddr apply1(get(car u,'i2d),1) else realp lc u and realp red u; symbolic procedure fd2f u; if atom u then u else if car u eq '!:gi!: then addf(!*n2f cadr u,multf(!*k2f 'i,!*n2f cddr u)) else addf(multf(!*p2f lpow u,fd2f lc u),fd2f red u); % symbolic procedure giprep!: u; %giprep1 cdr u; % prepsq!* addsq(!*n2f cadr u ./ 1, % multsq(!*n2f cddr u ./ 1, !*k2q 'i)); % symbolic procedure giprep1 u; %not used now; % if cdr u=0 then car u % else if car u=0 then retimes list(cdr u,'i) % else begin scalar gn; % gn := gcdn(car u,cdr u); % return retimes list(gn, % replus list(car u/gn,retimes list(cdr u/gn,'i))) % end; symbolic procedure giprep!: u; <<if im=0 then rl else if rl=0 then giprim im else if im<0 then list('difference,rl,giprim(minus im)) else list('plus,rl,giprim im)>> where rl=cadr u,im=cddr u; symbolic procedure giprim im; if im=1 then 'i else list('times,im,'i); symbolic procedure giprn!: v; (lambda u; if atom u or (car u eq 'times) then maprin u else <<prin2!* "("; maprin u; prin2!* ")" >>) giprep!: v; % symbolic procedure girationalize!: u; % %Rationalizes standard quotient u over the gaussian integers. % begin scalar x,y,z; % y := denr u; % z := conjgd y; % if y=z then return u; % x := multf(numr u,z); % y := multf(y,z); % return x ./ y % end; symbolic procedure girationalize!: u; % Rationalizes standard quotient u over the gaussian integers. begin scalar y,z,!*gcd; !*gcd := t; if y=(z := conjgd(y := denr u)) then return u; % Remove from z any real polynomial factors of y and z. z := quotf(z,quotf( gcdf(addf(y,z),multf(addf(z,negf y),'!:gi!: . (0 . 1))),2)); % The following subs2 can undo the above if !*match is non-NIL. % return subs2 gigcdsq(multf(numr u,z),multf(y,z)) return gigcdsq(multf(numr u,z),multf(y,z)) end; symbolic procedure gigcdsq(x,y); % remove integer common factor. <<if x then (<<if d neq 1 and (d := giintgcd(x,d)) neq 1 then <<x := quotf(x,d); y := quotf(y,d)>> >> where d=giintgcd(y,0)); x ./ y >>; symbolic procedure giintgcd(u,d); if d=1 then 1 else if null u then d else if atom u then gcdn(u,d) else if eqcar(u,'!:gi!:) then gcdn(cadr u,gcdn(cddr u,d)) else giintgcd(lc u,giintgcd(red u,d)); symbolic procedure conjgd u; begin scalar x; return if atom u then u else if domainp u and (x := get(car u,'cmpxfn)) then apply2(x,cadr u, if numberp cddr u then -cddr u % Allow for tagged parts of complex object. else if domainp cddr u and not numberp caddr u then !:minus cddr u else cdr !:minus (get(car u,'realtype).cddr u)) else if domainp u then u % Should be a real number now. else addf(multpf(lpow u,conjgd lc u),conjgd red u) end; initdmode 'complex; endmodule; module cpxrn; % *** Support for Complex Rationals. % Authors: Anthony C. Hearn and Stanley L. Kameny. % Copyright (c) 1989 The RAND Corporation. All rights reserved. Comment this module defines a complex rational as: (<tag>. (<structure> . <structure>>). The <tag> is '!:crn!: and the <structure> is (n . d) where n and d are integers; fluid '(!:prec!:); global '(bfone!* epsqrt!*); fluid '(dmode!* !*bfspace !*numval); switch bfspace,numval; !*bfspace := !*numval := t; global '(domainlist!*); domainlist!* := union('(!:crn!:),domainlist!*); fluid '(!*complex!-rational); put('complex!-rational,'tag,'!:crn!:); put('!:crn!:,'dname,'complex!-rational); flag('(!:crn!:),'field); put('!:crn!:,'i2d,'i2crn!*); put('!:crn!:,'plus,'crn!:plus); put('!:crn!:,'times,'crn!:times); put('!:crn!:,'difference,'crn!:differ); put('!:crn!:,'quotient,'crn!:quotient); put('!:crn!:,'zerop,'crn!:zerop); put('!:crn!:,'onep,'crn!:onep); put('!:crn!:,'prepfn,'crn!:prep); put('!:crn!:,'prifn,'crn!:prin); put('!:crn!:,'minus,'crn!:minus); put('!:crn!:,'factorfn,'crn!:factor); put('!:crn!:,'rationalizefn,'girationalize!:); put('!:crn!:,'!:rn!:,'!*crn2rn); put('!:rn!:,'!:crn!:,'!*rn2crn); put('!:rd!:,'!:crn!:,'!*rd2crn); put('!:crn!:,'!:rd!:,'!*crn2rd); put('!:gi!:,'!:crn!:,'!*gi2crn); put('!:crn!:,'cmpxfn,'mkcrn); put('!:crn!:,'ivalue,'mkdcrn); put('!:crn!:,'intequivfn,'crnequiv); put('!:crn!:,'realtype,'!:rn!:); put('!:rn!:,'cmpxtype,'!:crn!:); put('!:crn!:,'minusp,'crn!:minusp); symbolic procedure crn!:minusp u; caddr u=0 and minusp caadr u; symbolic procedure mkcrn(u,v); '!:crn!: . u . v; symbolic smacro procedure crntag x; '!:crn!: . x; symbolic smacro procedure rntag x; '!:rn!: . x; symbolic smacro procedure crnrl x; cadr x; symbolic smacro procedure crnim x; cddr x; symbolic procedure crn!:simp u; (crntag u) ./ 1; put('!:crn!:,'simpfn,'crn!:simp); symbolic procedure mkdcrn u; ('!:crn!: . ((0 . 1) . (1 . 1))) ./ 1; symbolic procedure i2crn!* u; mkcrn(u . 1,0 . 1); %converts integer U to tagged crn form. symbolic procedure !*crn2rn n; % Converts a crn number n into a rational if possible. if not(car crnim n=0) then cr2rderr() else '!:rn!: . crnrl n; symbolic procedure !*rn2crn u; mkcrn(cdr u,0 . 1); % Converts the (tagged) rational u/v into a (tagged) crn. symbolic procedure !*crn2rd n; if not(car crnim n=0) then cr2rderr() else mkround chkrn!* r2bf crnrl n; symbolic procedure !*rd2crn u; mkcrn(realrat x,0 . 1) where x=round!* u; symbolic procedure !*gi2crn u; mkcrn((cadr u) . 1,(cddr u) . 1); symbolic procedure crn!:plus(u,v); mkcrn(cdr rnplus!:(rntag crnrl u,rntag crnrl v), cdr rnplus!:(rntag crnim u,rntag crnim v)); symbolic procedure crn!:differ(u,v); mkcrn(cdr rndifference!:(rntag crnrl u,rntag crnrl v), cdr rndifference!:(rntag crnim u,rntag crnim v)); symbolic procedure crn!:times(u,v); mkcrn(cdr rndifference!:(rntimes!:(ru,rv),rntimes!:(iu,iv)), cdr rnplus!:(rntimes!:(ru,iv),rntimes!:(rv,iu))) where ru=rntag crnrl u,iu=rntag crnim u, rv=rntag crnrl v,iv=rntag crnim v; symbolic procedure crn!:quotient(u,v); <<v := rnplus!:(rntimes!:(rv,rv),rntimes!:(iv,iv)); mkcrn(cdr rnquotient!:(rnplus!:(rntimes!:(ru,rv),rntimes!:(iu,iv)),v), cdr rnquotient!:(rndifference!:(rntimes!:(iu,rv),rntimes!:(ru,iv)),v))>> where ru=rntag crnrl u,iu=rntag crnim u, rv=rntag crnrl v,iv=rntag crnim v; symbolic procedure crn!:minus u; mkcrn((-car ru) . cdr ru,(-car iu) . cdr iu) where ru=crnrl u,iu=crnim u; symbolic procedure crn!:zerop u; car crnrl u=0 and car crnim u=0; symbolic procedure crn!:onep u; car crnim u=0 and crnrl u='(1 . 1); symbolic procedure crn!:prep u; crnprep1((rntag crnrl u) . rntag crnim u); symbolic procedure crn!:factor u; (begin scalar m,n,p,x,y; setdmode('rational,nil) where !*msg = nil; x := subf(u,nil); y := fctrf numr x; n := car y; setdmode('rational,t) where !*msg = nil; y := for each j in cdr y collect <<p := numr subf(car j,nil); n := multd(n,m := exptf(lnc ckrn p,cdr j)); quotfd(p,m) . cdr j>>; return int!-equiv!-chk quotfd(n,denr x) . y end) where dmode!*=dmode!*; symbolic procedure crnprimp u; if rnonep!: u then 'i else if rnonep!: rnminus!: u then list('minus,'i) else list('times,rnprep!: u,'i); symbolic procedure crnprep1 u; if rnzerop!: cdr u then rnprep!: car u else if rnzerop!: car u then crnprimp cdr u else if rnminusp!: cdr u then list('difference,rnprep!: car u,crnprimp rnminus!: cdr u) else list('plus,rnprep!: car u,crnprimp cdr u); symbolic procedure crn!:prin u; (if atom v or car v eq 'times or car v memq domainlist!* then maprin v else <<prin2!* "("; maprin v; prin2!* ")">>) where v=crn!:prep u; symbolic procedure crnequiv u; % Returns an equivalent integer if possible. if cadr(u := cdr u) = 0 and cdar u = 1 then caar u else nil; initdmode 'complex!-rational; endmodule; module compopr; % Operators on Complex Expressions. % Author: Eberhard Schruefer. % Modifications by: Francis Wright. fluid '(!*exp !*factor kord!*); put('repart,'simpfn,'simprepart); symbolic procedure simprepart u; repartsq simp!* car u where !*factor = nil; symbolic procedure repartsq u; multsq(addsq(multsq(repartnum,repartden), multsq(impartnum,impartden)), invsq addsq(multsq(repartden,repartden), multsq(impartden,impartden))) where repartnum = car reimnum, impartnum = cdr reimnum, repartden = car reimden, impartden = cdr reimden where reimnum = splitcomplex numr u, reimden = splitcomplex denr u; put('impart,'simpfn,'simpimpart); symbolic procedure simpimpart u; impartsq simp!* car u where !*factor = nil; symbolic procedure impartsq u; multsq(addsq(multsq(impartnum,repartden), negsq multsq(repartnum,impartden)), invsq addsq(multsq(repartden,repartden), multsq(impartden,impartden))) where repartnum = car reimnum, impartnum = cdr reimnum, repartden = car reimden, impartden = cdr reimden where reimnum = splitcomplex numr u, reimden = splitcomplex denr u; put('conj,'simpfn,'simpconj); symbolic procedure simpconj u; conjsq simp!* car u; symbolic procedure conjsq u; (if null numr w then u else addsq(repartsq u,negsq multsq(simp 'i,w))) where w=impartsq u; smacro procedure idomainp; get('i,'idvalfn); % Tests if 'i' is transformed to a domain structure. symbolic procedure splitcomplex u; (begin scalar v; v := if idomainp() then expand!-imrepart u else <<if smemq('i,u) then <<setkorder('i . kord!*); u:=reorder u>>; subs2 expand!-imrepart u>>; return take!-realpart v . take!-impart v end) where kord!* = kord!*,!*exp = t; symbolic procedure expand!-imrepart u; if domainp u then u ./ 1 else addsq(multsq(expand!-imrepartpow lpow u, expand!-imrepart lc u), expand!-imrepart red u); symbolic procedure expand!-imrepartpow u; % This needs to treat kernels that are standard forms smarter. % At the moment, we expand to get the required result. begin scalar !*exp,cmpxsplitfn; !*exp := t; cmpxsplitfn := null idp car u and get(car car u,'cmpxsplitfn); return exptsq(if null cmpxsplitfn then if car u eq 'i then !*k2q 'i else addsq(mkrepart car u, multsq(simp 'i, mkimpart car u)) else apply1(cmpxsplitfn,car u),cdr u) end; symbolic procedure mkrepart u; if realvaluedp u then !*k2q u else if sfp u then repartsq(u ./ 1) else mksq(list('repart, u),1); symbolic procedure mkimpart u; if realvaluedp u then nil ./ 1 else if sfp u then impartsq(u ./ 1) else mksq(list('impart, u),1); symbolic procedure take!-realpart u; repartf numr u ./ denr u; symbolic procedure repartf u; if domainp u then if atom u then u else if get(car u,'cmpxfn) % We now know u is of form (<tag> <re> . <im>). then int!-equiv!-chk(car u . cadr u . cadr apply1(get(car u,'i2d),0)) % Otherwise we assume it is real else u else if mvar u eq 'i then repartf red u else if null dmode!* then addf(!*t2f lt u,repartf red u) else addf(multpf(lpow u,repartf lc u),repartf red u); symbolic procedure take!-impart u; impartf numr u ./ denr u; symbolic procedure impartf u; if domainp u then if atom u then nil else if get(car u,'cmpxfn) % We now know u is of form (<tag> <re> . <im>). then int!-equiv!-chk(car u . cddr u . cadr apply1(get(car u,'i2d),0)) % Otherwise we assume it is real else nil else if mvar u eq 'i then addf(lc u,impartf red u) else if null dmode!* then impartf red u else addf(multpf(lpow u,impartf lc u),impartf red u); % The following code attempts to improve the way that the complex % operators CONJ, REPART and IMPART handle values that are implicitly % real, namely composed "reality-preserving" functions of explicitly % real numbers, implicitly real symbolic constants and variables that % the user has declared using the REALVALUED command defined below. % All arithmetic operations, direct trig functions and the exponential % function are "reality-preserving", but inverse trig functions and the % logarithm are "reality-preserving" only for real arguments in a % restricted range. This relates to piecewise-defined functions! This % code is believed to make the right decision about implicit reality in % straightforward cases, and otherwise errs on the side of caution and % makes no assumption at all, as does the standard REDUCE 3.4 code. It % performs only very limited numerical evaluation, which should be very % fast. It never performs any approximate numerical evaluation, or any % sophisticated analysis, both of which would be much slower and/or % complicated. The current strategy is believed to represent a % reasonable compromise, and will normally give the user what they % expect without undue overhead. rlistat '(realvalued notrealvalued); % Make user operators. symbolic procedure realvalued u; % Command to allow the user to declare functions or variables to be % implicitly real valued. <<rmsubs(); % So that an expression can be re-evaluated. for each v in u do if not idp v then typerr(v,"id") else flag(list v,'realvalued)>>; symbolic procedure notrealvalued u; % Undo realvalued declaration. % Cannot recover "complexity", so no need for rmsubs(). for each v in u do if not idp v then typerr(v,"id") else remflag(list v, 'realvalued); flag('(realvaluedp),'boolean); % Make realvaluedp available in % algebraic mode. symbolic procedure realvaluedp u; % True if the true prefix kernel form u is explicitly or implicitly % real-valued. if atom u then numberp u or flagp(u, 'realvalued) else begin scalar caru; % cnd return flagp((caru := car u), 'alwaysrealvalued) % real-valued for all possible argument values or (flagp(caru, 'realvalued) and realvaluedlist cdr u) % real-valued function if arguments are real-valued, % an important common special case of condrealvalued. %% or ((cnd := get(caru, 'condrealvalued)) and apply(cnd, cdr u)) % real-valued function if arguments satisfy conditions % that depend on the function or caru eq '!:rd!:; % rounded number - least likely? end; symbolic procedure realvaluedlist u; % True if every element of the list u of true prefix kernel forms % is real-valued. realvaluedp car u and (null cdr u or realvaluedlist cdr u); % Define the real valued properties % --------------------------------- % Only operators that can remain symbolic need be considered, % e.g. NOT nextprime, num, den, deg, det. % A very small number of functions are real-valued for ALL arguments: flag('(repart impart abs ceiling floor fix round max min), 'alwaysrealvalued); % Symbolic constants: flag('(pi e infinity),'realvalued); % Some functions are real-valued if all their arguments are % real-valued, without further constraints: % Arithmetic operators: flag('(plus minus times quotient), 'realvalued); % Elementary transcendental functions, etc: flag('(exp cbrt hypot sin cos tan csc sec cot sind cosd tand cscd secd cotd sinh cosh tanh csch sech coth atan atand atan2 atan2d acot acotd asinh acsch factorial), 'realvalued); % Additional such variables and functions can be declared by the user % with the REALVALUED command defined above. put('sin,'cmpxsplitfn,'reimsin); symbolic procedure reimsin u; addsq(multsq(simp list('sin,rearg), simp list('cosh,imarg)), multsq(simp 'i, multsq(simp list('cos,rearg), simp list('sinh,imarg)))) where rearg = prepsq simprepart cdr u, imarg = prepsq simpimpart cdr u; put('cos,'cmpxsplitfn,'reimcos); symbolic procedure reimcos u; addsq(multsq(simp list('cos,rearg), simp list('cosh,imarg)), multsq(simp 'i,negsq multsq(simp list('sin,rearg), simp list('sinh,imarg)))) where rearg = prepsq simprepart cdr u, imarg = prepsq simpimpart cdr u; put('expt,'cmpxsplitfn,'reimexpt); symbolic procedure reimexpt u; if cadr u eq 'e then addsq(reimcos list('cos,reval list('times,'i,caddr u)), multsq(simp list('minus,'i), reimsin list('sin,reval list('times,'i,caddr u)))) else if fixp cadr u and cadr u > 0 and eqcar(caddr u,'quotient) and fixp cadr caddr u and fixp caddr caddr u then mksq(u,1) else addsq(mkrepart u,multsq(simp 'i,mkimpart u)); endmodule; module modular; % *** Tables for modular integers ***. % Author: Anthony C. Hearn and Herbert Melenk. % Copyright (c) 1995 The RAND Corporation. All rights reserved. global '(domainlist!*); fluid '(!*modular !*balanced_mod current!-modulus alglist!* dmode!*); switch modular,balanced_mod; domainlist!* := union('(!:mod!:),domainlist!*); put('modular,'tag,'!:mod!:); put('!:mod!:,'dname,'modular); flag('(!:mod!:),'field); flag('(!:mod!:),'convert); put('!:mod!:,'i2d,'!*i2mod); put('!:mod!:,'!:ft!:,'modcnv); put('!:mod!:,'!:rn!:,'modcnv); put('!:mod!:,'minusp,'modminusp!:); put('!:mod!:,'plus,'modplus!:); put('!:mod!:,'times,'modtimes!:); put('!:mod!:,'difference,'moddifference!:); put('!:mod!:,'quotient,'modquotient!:); put('!:mod!:,'divide,'moddivide!:); put('!:mod!:,'gcd,'modgcd!:); put('!:mod!:,'zerop,'modzerop!:); put('!:mod!:,'onep,'modonep!:); put('!:mod!:,'factorfn,'factormod!:); put('!:mod!:,'sqfrfactorfn,'factormod!:); put('!:mod!:,'expt,'exptmod!:); put('!:mod!:,'prepfn,'modprep!:); put('!:mod!:,'prifn,'(lambda(x) (prin2!* (prepf x)))); put('!:mod!:,'unitsfn,'!:mod!:unitconv); symbolic procedure exptmod!:(u,n); (lambda x; if x=0 then nil else if x=1 then 1 else '!:mod!: . x) general!-modular!-expt(cdr u,n); % This procedure will check for cdr u > n-1 if n prime. symbolic procedure !:mod!:unitconv(u,v); if v=1 then u else (if x neq 0 then multd('!:mod!: . x,numr u) ./ multd('!:mod!: . x,denr u) else mod!-error {'quotient,1,cdr v}) where x = !:mod!:units(current!-modulus,cdr v,0,1); symbolic procedure !:mod!:units(a,b,x,y); % Same procedure as in genmod without error call. if b=0 then 0 else if b=1 then if y < 0 then y+current!-modulus else y else begin scalar w; w := a/b; return !:mod!:units(b,a-b*w,y,x-y*w) end; symbolic procedure !*i2mod u; % Converts integer U to modular form. % if (u := general!-modular!-number u)=0 then nil else '!:mod!: . u; '!:mod!: . general!-modular!-number u; symbolic procedure modcnv u; rerror(poly,13,list("Conversion between modular integers and", get(car u,'dname),"not defined")); symbolic procedure modminusp!: u; if !*balanced_mod then 2*cdr u > current!-modulus else nil; symbolic procedure !*modular2f u; % if u=0 then nil else if u=1 then 1 else '!:mod!: . u; '!:mod!: . u; symbolic procedure modplus!:(u,v); !*modular2f general!-modular!-plus(cdr u,cdr v); symbolic procedure modtimes!:(u,v); !*modular2f general!-modular!-times(cdr u,cdr v); symbolic procedure moddifference!:(u,v); !*modular2f general!-modular!-difference(cdr u,cdr v); symbolic procedure moddivide!:(u,v); !*i2mod 0 . u; symbolic procedure modgcd!:(u,v); !*i2mod 1; symbolic procedure modquotient!:(u,v); !*modular2f general!-modular!-times(cdr u, general!-modular!-reciprocal cdr v); symbolic procedure modzerop!: u; cdr u=0; symbolic procedure modonep!: u; cdr u=1; symbolic procedure factormod!: u; begin scalar alglist!*,dmode!*; % 1 is needed since factorize expects first factor to be a number. return pfactor(!*q2f resimp(u ./ 1),current!-modulus) end; symbolic procedure modprep!: u; <<u := cdr u; if !*balanced_mod and u+u>current!-modulus then u-current!-modulus else u>>; initdmode 'modular; % Modular routines are defined in the GENMOD module with the exception % of the following: symbolic procedure setmod u; % Returns value of CURRENT!-MODULUS on entry unless an error % occurs. It crudely distinguishes between prime moduli, for which % division is possible, and others, for which it possibly is not. % The code should really distinguish prime powers and composites as % well. begin scalar dmode!*; if not atom u then u := car u; % Since setmod is a psopfn. u := reval u; % dmode* is NIL, so this won't be reduced wrt % current modulus. if fixp u and u>0 then <<if primep u then flag('(!:mod!:),'field) else remflag('(!:mod!:),'field); return set!-general!-modulus u>> else if u=0 or null u then return current!-modulus else typerr(u,"modulus") end; put('setmod, 'psopfn, 'setmod); %A more general definition of general-modular-number. %symbolic procedure general!-modular!-number m; %returns normalized M; % (lambda n; %if n<0 then n+current!-modulus else n) % if atom m then remainder(m,current!-modulus) % else begin scalar x; % x := dcombine(m,current!-modulus,'divide); % return cdr x % end; % Support for "mod" as an infix operator. infix mod; precedence mod,over; put('mod,'psopfn,'evalmod); symbolic procedure evalmod u; begin scalar dm,cp,m,mm,w,!*rounded,!*modular; if !*complex then <<cp:=t; setdmode('complex,nil); !*complex:=nil>>; if (dm:=get(dmode!*,'dname)) then setdmode(dm,nil); m:=ieval cadr u; setdmode('modular,t); !*modular:=t; mm:=apply1('setmod,{m}); w:=aeval!* car u; apply1('setmod,{mm}); if dm neq 'modular then <<setdmode('modular,nil); if dm then setdmode(dm,t)>>; if cp then <<setdmode('complex,t); !*complex :=t>>; return w; end; % Support for function evaluation in the modular domain. % At present only rational exponentiation, including surds. put('!:mod!:,'domainvalchk,'mod!-domainvalchk); symbolic procedure mod!-domainvalchk(fn,u); begin scalar w; w:=if fn='expt then mod!-expt!-fract(car u,cadr u) else nil; return if w='failed then nil else w ./1; end; symbolic procedure mod!-expt!-fract(u,x); % Modular u**x where x is a rational number n/m. Compute a solution of % q^n=u^m. If *precise on, expressions with non-unique are not % simplified. Non existing surds are mapped to an error message. begin scalar n,m,w; if denr u =1 then u:=numr u else go to done; if eqcar(u,'!:mod!:) then t else if fixp u then u:= '!:mod!: . u else go to done; if u='(!:mod!: . 1) then return 1; n:=numr x; m:=denr x; if not fixp n or not fixp m then go to done; if m=1 then return exptmod!:(u,n); load!-package 'modsr; w:=cdr msolve {{'equal,{'expt,'x,m},{'expt,cdr u,n}}}; if null w then mod!-error({'expt,u,{'quotient,n,m}}); if null cdr w or null !*precise then return caddr cadr car w; % value is not unique - prevent the default integer % handling that would compute an incorrect value. % e.g. sqrt(4) mod 9 is not 2 but {2,7}. return !*k2f car fkern {'expt,cdr u,{'quotient,n,m}}; done: return if null w or cdr w then 'failed else caddr car w; end; symbolic procedure mod!-error u; typerr(u, {"expression mod", current!-modulus}); endmodule; module facform; % Factored form representation for standard form polys. % Author: Anthony C. Hearn. % Copyright (c) 1990 The RAND Corporation. All rights reserved. % INTEGER FACTORS? % SHOULDN'T SYMMETRIC TESTS ETC BE RUN RECURSIVELY? fluid '(!*exp !*ezgcd !*factor !*force!-prime !*gcd !*ifactor !*kernreverse !*limitedfactors !*sqfree !*trfac current!-modulus dmode!* m!-image!-variable ncmp!*); switch limitedfactors; % switch sqfree; put('sqfree,'simpfg,'((t (rmsubs) (setq !*exp nil)) (nil (rmsubs) (setq !*exp t)))); Comment In this module, we consider the manipulation of factored forms. These have the structure <monomial> . <form-power-list> where the monomial is a standard form (with numerator and denominator satisfying the KERNLP test) and a form-power is a dotted pair whose car is a standard form and cdr an integer>0. We have thus represented the form as a product of a monomial quotient and powers of non-monomial factors; symbolic procedure fac!-merge(u,v); % Returns the merge of the factored forms U and V. multf(car u,car v) . append(cdr u,cdr v); symbolic procedure factorize u; % Factorize the polynomial u, returning the factors found. (begin scalar x,y; x := simp!* u; y := denr x; if not domainp y then typerr(u,"polynomial"); u := numr x; if u = 1 then return list('list,1) else if fixp u then !*ifactor := t; % Factor an integer. if !*force!-prime and not primep !*force!-prime then typerr(!*force!-prime,"prime"); u := if dmode!* then if get(dmode!*,'factorfn) then begin scalar !*factor; !*factor := t; return fctrf u end else rerror(poly,14, list("Factorization not supported over domain", get(dmode!*,'dname))) else fctrf u; return facform2list(u,y) end) where !*ifactor = !*ifactor; symbolic procedure facform2list(x,y); begin scalar factor!-count,w,z; if null car x and null cdr x then return list 'list; % car x is now expected to be a number. z:= (0 . car x) . nil; x := reversip!* cdr x; % This puts factors in better order. factor!-count:=0; for each fff in x do for i:=1:cdr fff do z := ((factor!-count:=factor!-count+1) . mk!*sq(car fff ./ 1)) . z; z := multiple!-result(z,w); if atom z then typerr(z,"factor form") % old style input else if numberp cadr z and cadr z<0 and cddr z then z := car z . (- cadr z) . mk!*sq negsq simp caddr z . cdddr z; % make numerical coefficient positive. z := cdr z; if car z = 1 then z := cdr z else if not fixp car z then z := prepd car z . cdr z else if !*ifactor then z := append(pairlist2list reversip zfactor car z,cdr z); if y neq 1 then z := list('recip,prepd y) . z; return 'list . z end; flag('(factorize),'opfn); symbolic procedure pairlist2list u; for each x in u conc nlist(car x,cdr x); symbolic procedure fctrf u; % U is a standard form. Value is a factored form. % The function FACTORF is an assumed entry point to a more complete % factorization module. It returns a form power list. (begin scalar !*ezgcd,!*gcd,denom,x,y; if domainp u then return list u else if ncmp!* and not noncomf u then ncmp!* := nil; !*gcd := t; if null !*limitedfactors and null dmode!* then !*ezgcd := t; if null !*mcd then rerror(poly,15,"Factorization invalid with MCD off") else if null !*exp then <<!*exp := t; u := !*q2f resimp !*f2q u>>; % Convert rationals to integers for factorization. if dmode!* eq '!:rn!: then <<dmode!* := nil; alglist!* := nil . nil; u := simp prepf u; denom := denr u; u := numr u>>; % Check for homogeneous polynomials. This can't be done with % current code though if non-commuting objects occur. if null ncmp!* then <<x := sf2ss u; if homogp x then <<if !*trfac then prin2t "This polynomial is homogeneous - variables scaled"; y := caaar x . listsum caaadr x; x := fctrf1 ss2sf(car(x) . (reverse subs0 cadr x . 1)); x := rconst(y,x); return car x . sort!-factors cdr x>>>>; u := fctrf1 u; if denom then <<alglist!* := nil . nil; dmode!* := '!:rn!:; car u := quotf(car u,denom)>>; return car u . sort!-factors cdr u end) where !*exp = !*exp, ncmp!* = ncmp!*; symbolic procedure fctrf1 u; begin scalar x,y,z; if domainp u then return list u; % Do this again just in case. if flagp(dmode!*,'field) and ((z := lnc u) neq 1) then u := multd(!:recip z,u) else if dmode!* and (y := get(dmode!*,'unitsfn)) then <<x := apply2(y,1 . u,lnc u); u := cdr x; z := !:recip car x>>; x := comfac u; u := quotf(u,comfac!-to!-poly x); y := fctrf1 cdr x; % factor the content. if car x then y := car y . (!*k2f caar x . cdar x) . cdr y; if z and (z neq 1) then y := multd(z,car y) . cdr y; if domainp u then return multf(u,car y) . cdr y else if minusf u then <<u := negf u; y := negf car y . cdr y>>; return fac!-merge(factor!-prim!-f u,y) end; symbolic procedure factorize!-form!-recursion u; fctrf1 u; symbolic procedure factor!-prim!-f u; % U is a non-trivial form which is primitive in all its variables % and has a positive leading numerical coefficient. Result is a % form power list. begin scalar v,w,x; if ncmp!* then return list(1,u . 1); if dmode!* and (x := get(dmode!*,'sqfrfactorfn)) then if !*factor then v := apply1(x,u) else v := list(1,u . 1) else if flagp(dmode!*,'field) and ((w := lnc u) neq 1) then v := w . sqfrf multd(!:recip w,u) else v := 1 . sqfrf u; if x and (x eq get(dmode!*,'factorfn)) then return v; % No point in re-factorizing. w := list car v; for each x in cdr v do w := fac!-merge(factor!-prim!-sqfree!-f x,w); return w end; symbolic procedure factor!-prim!-sqfree!-f u; % U is of the form <square free poly> . <power>. Result is a factored % form. % Modified to work properly in rounded (real or complex), % rational and complex modes. SLK. begin scalar x,y,!*msg,r; r := !*rounded; if r or !*complex or !*rational then <<if r then on rational; u := numr resimp !*f2q car u . cdr u>>; if null !*limitedfactors then <<if null dmode!* then y := 'factorf else <<x := get(dmode!*,'sqfrfactorfn); y := get(dmode!*,'factorfn); if x and not(x eq y) then y := 'factorf>>; if y then <<y := apply1(y,car u); u := (car y . for each j in cdr y collect(car j . cdr u)); go to ret>>>>; u := factor!-prim!-sqfree!-f!-1(car u,cdr u); ret: if r then <<on rounded; u := car u . for each j in cdr u collect (numr resimp !*f2q car j . cdr j)>>; return u end; symbolic procedure distribute!.multiplicity(factorlist,n); % Factorlist is a simple list of factors of a square free primitive % multivariate poly and n is their multiplicity in a square free % decomposition of another polynomial. result is a list of form: % ((f1 . n),(f2 . n),...) where fi are the factors. for each w in factorlist collect (w . n); symbolic procedure factorf u; % NOTE: This is not an entry point to be used by novice programmers. % Please used FCTRF instead. % There is an inefficiency in this procedure relating to ordering. % There is a final reordering done at every recursive level in order % to make sure final result has the right order. However, this only % need be done once at the top level, probably in fctrf. Since some % programmers still use this function however, it's safer for it to % return results in the correct order. (begin scalar m!-image!-variable,new!-korder,old!-korder,sign,v; if domainp u then return list u; new!-korder:=kernord(u,nil); if !*kernreverse then new!-korder:=reverse new!-korder; old!-korder:=setkorder new!-korder; u := reorder u; % Make var of lowest degree the main one. if minusf u then <<sign := not sign; u := negf u>>; v := comfac u; % Since new order may reveal more factors. u := quotf1(u,cdr v); if domainp u or car v then errach list("Improper factors in factorf"); v := fctrf1 cdr v; m!-image!-variable := mvar u; u := distribute!.multiplicity(factorize!-primitive!-polynomial u,1); setkorder old!-korder; if sign then u := (negf caar u . cdar u) . cdr u; u := fac!-merge(v,1 . u); return car u . for each w in cdr u collect (reorder car w . cdr w) end) where current!-modulus = current!-modulus; symbolic procedure factor!-prim!-sqfree!-f!-1(u,n); (exptf(car x,n) . for each j in cdr x collect (j . n)) where x = prsqfrfacf u; symbolic procedure sqfrf u; % U is a non-trivial form which is primitive in all its variables % and has a positive leading numerical coefficient which should be 1. % SQFRF performs square free factorization on U and returns a % form power list. % Modified to work properly in rounded (real or complex) modes. SLK. begin integer n; scalar !*gcd,v,w,x,y,z,!*msg,r; !*gcd := t; if (r := !*rounded) then <<on rational; u := numr resimp !*f2q u>>; n := 1; x := mvar u; v := gcdf(u,diff(u,x)); u := quotf(u,v); % If domain is a field, v can have a spurious numerical factor. if flagp(dmode!*,'field) and ((y := lnc u) neq 1) then <<u := multd(!:recip y,u); v := multd(y,v)>>; while degr(v,x)>0 do <<w := gcdf(v,u); if u neq w then z := (quotf(u,w) . n) . z; % Don't add units to z. v := quotf(v,w); u := w; n := n + 1>>; if r then <<on rounded; u := numr resimp !*f2q u; z := for each j in z collect numr resimp !*f2q car j . cdr j>>; return (u . n) . z end; symbolic procedure sqfrf!* u; caar sqfrf u; put('square_free,'polyfn,'sqfrf!*); symbolic procedure diff(u,v); % A polynomial differentation routine which does not check % indeterminate dependencies. if domainp u then nil else addf(addf(multpf(lpow u,diff(lc u,v)), multf(lc u,diffp1(lpow u,v))), diff(red u,v)); symbolic procedure diffp1(u,v); if not( car u eq v) then nil else if cdr u=1 then 1 else multd(cdr u,!*p2f(car u .** (cdr u-1))); endmodule; module homog; % Procedures for factorization of homogeneous polynomials. % Authors: Shuichi Moritsugu <y31046@tansei.cc.u-tokyo.ac.jp> % and Eiichi Goto. symbolic procedure homogp s; % Confirmation of homogeneous polynomials. if domainp s or domainp car s then nil else if null cdadr s then nil else if domainp cdr lastnondomain cadr s then nil else if listsum caaadr s=listsum caar lastnondomain cadr s then t else nil; symbolic procedure subs0 nm; %Substitution of 0 into exponent list. if null nm then nil else ((0 . cdaar nm) . cdar nm) . subs0 cdr nm; symbolic procedure varss(v,d); % Ss of single variable. ((v . nil) . 1) . ((((d . nil) . 1) . nil) . 1); symbolic procedure rconstnm(nm,nv,td); % Reconstruction of numerator. if null nm then nil else if domainp nm then ((td . mkzl(nv+1)) . nm) . nil else (((td-listsum caar nm) . caar nm) . cdar nm) . rconstnm(cdr nm,nv,td); symbolic procedure rconst1(s,v,td); % Reconstruction of one factor. if homogp s then s else ((v . caar s) . (cdar s+1)) . (reverse rconstnm(cadr s,cdar s,td) . cddr s); symbolic procedure rconst(p,fctrlis); % Reconstruction of factors. begin scalar v,d,td,fs,fcf,ffl,x; v := car p; d := cdr p; fcf := car fctrlis; for i:=2:length fctrlis do <<x := nth(fctrlis,i); fs := sf2ss car x; td := listsum caaadr fs; fs := rconst1(fs,v,td); d := d-cdr x*td; ffl := aconc(ffl,ss2sf fs . cdr x)>>; ffl := fcf . ffl; if d>0 then ffl := aconc(ffl,ss2sf varss(v,1) . d); return ffl; end; endmodule; module tdconv; % Procedures for conversion of internal & external % expressions defined with total degree ordering. % Authors: Shuichi Moritsugu <y31046@tansei.cc.u-tokyo.ac.jp> % and Eiichi Goto. symbolic procedure setunion(l1,l2); % Union of two sets. if null l2 then l1 else if member(car l2,l1) then setunion(l1,cdr l2) else setunion(append(l1,car l2 . nil),cdr l2); symbolic procedure searchtm term; % Search for variables in a term. if domainp term then nil else caar term . searchpl cdr term; symbolic procedure searchpl poly; % Search for variables in a polynomial. if domainp poly then nil else setunion(searchtm car poly,searchpl cdr poly); symbolic procedure qsort l; % Quick sort of variables with lexicographic ordering. begin scalar a,l1,l2,ll; if null l then return nil; a:=car l; ll:=cdr l; loop : if null ll then go to exit; % We need ORDOP rather than ORDERP in next line to be consistent % with the way that REDUCE orders expressions. if ordop(a,car ll) then l2:=car ll . l2 else l1:=car ll . l1; ll:=cdr ll; go to loop; exit : return append(qsort l1,a . qsort l2); end; symbolic procedure mapins(ep,cfl); % Insert of exponent into coefficient list. if null cfl then nil else ((ep . caar cfl) . cdar cfl) . mapins(ep,cdr cfl); symbolic procedure mkzl n; % Making of zero-list (length = n-1). if n=1 then nil else 0 . mkzl(n-1); symbolic procedure sq2sstm(sqtm,vd); % Transformation of term from sq to ss. begin scalar ep,cf,cfl; if caar sqtm=caar vd then <<cf:=cdr sqtm; ep:=cdar sqtm; if domainp cf then return ((ep . mkzl cdr vd) . cf) . nil else cfl:=sq2sscfpl(cf,cdar vd . sub1 cdr vd)>> else <<cfl:=sq2sscfpl(sqtm . nil,cdar vd . sub1 cdr vd); ep:=0>>; return mapins(ep,cfl); end; symbolic procedure sq2sscfpl(cfpl,vd); % Transformation of coefficient polynomial from sq to ss. if null cfpl then nil else if domainp cfpl then (mkzl(cdr vd+1) . cfpl) . nil else append(sq2sstm(car cfpl,vd),sq2sscfpl(cdr cfpl,vd)); symbolic procedure sq2sspl(sqpl,vd); % Transformation of polynomial from sq to ss. if domainp sqpl then sqpl else append(sq2sstm(car sqpl,vd),sq2sspl(cdr sqpl,vd)); symbolic procedure sdlist nm; % Classification of ss by the degree of main variable. begin scalar anslist,partlist,n,rnm; rnm:=nm; init : n:=caaar rnm; partlist:= car rnm . nil; loop : rnm:=cdr rnm; if null rnm then <<anslist:=append(anslist,partlist . nil); go to exit>>; if domainp rnm then <<anslist:=append(append(anslist, partlist . nil), rnm); go to exit>>; if n=caaar rnm then <<partlist:=append(partlist,car rnm . nil); go to loop>> else <<anslist:=append(anslist,partlist . nil); go to init>>; exit : return anslist; end; symbolic procedure univsdl2sq(var,sdl); % Transformation from univariate ss to sq. if domainp sdl then sdl else if zerop caaaar sdl then cdaar sdl else ((var . caaaar sdl) . cdaar sdl) . univsdl2sq(var,cdr sdl); symbolic procedure mapdel sdl; % Deletion of the exponent of main variable from ss. if null sdl then nil else (cdaar sdl . cdar sdl) . mapdel cdr sdl; symbolic procedure mulvsdl2sq(vd,sdl); % Transformation from multivariate ss to sq. if domainp sdl then sdl else if zerop caaaar sdl then if domainp cdr sdl and cdr sdl then append(sdl2sq(cdar vd . sub1 cdr vd, sdlist mapdel car sdl), cdr sdl) else sdl2sq(cdar vd . sub1 cdr vd, sdlist mapdel car sdl) else ((caar vd . caaaar sdl) . sdl2sq(cdar vd . sub1 cdr vd, sdlist mapdel car sdl)) . mulvsdl2sq(vd,cdr sdl); symbolic procedure sdl2sq(vd,sdl); % Transformation from classified ss to sq. if cdr vd=1 then univsdl2sq(caar vd,sdl) else mulvsdl2sq(vd,sdl); symbolic procedure termorder1(term1,term2); % Comparison of ordering between two terms (purely lexicographic % ordering). if null term1 then 0 else if zerop term1 and zerop term2 then 0 else if zerop term1 then -1 else if zerop term2 then 1 else if car term1<car term2 then -1 else if car term1>car term2 then 1 else termorder1(cdr term1,cdr term2); symbolic procedure listsum l; % Total degree. if null l then 0 else car l+listsum cdr l; symbolic procedure termorder(term1,term2); % Comparison of ordering between two terms (total degree and % lexicographic ordering). begin scalar s1,s2; if null term1 then 0 else if zerop term1 and zerop term2 then 0 else if zerop term1 then -1 else if zerop term2 then 1; s1:=listsum term1; s2:=listsum term2; return if s1=s2 then termorder1(term1,term2) else if s1<s2 then -1 else 1; end; symbolic procedure xxsort l; sort(l,function(lambda (a, b); termorder(car a,car b)<0)); % symbolic procedure xxsort l; % %Sort of terms with present ordering. % begin scalar a,l1,l2,ll; % if null l then return nil; % a:=car l; ll:=cdr l; % loop : if null ll then go to exit; % if termorder(car a,caar ll)<0 % then l1:=car ll . l1 % else l2:=car ll . l2; % ll:=cdr ll; go to loop; % exit : return append(xxsort l1,a . xxsort l2); % end; symbolic procedure lxsort l; sort(l,function(lambda (a, b); termorder1(car a,car b)<0)); % symbolic procedure lxsort l; % % Sort of terms with purely lexicographic ordering. % begin scalar a,l1,l2,ll; % if null l then return nil; % a:=car l; ll:=cdr l; % loop : if null ll then go to exit; % if termorder1(car a,caar ll)<0 % then l1:=car ll . l1 % else l2:=car ll . l2; % ll:=cdr ll; go to loop; % exit : return append(lxsort l1,a . lxsort l2); % end; symbolic procedure delet(a,l); %Deletion from list. if null a then l else if null l or a=l then nil else if a=car l then cdr l else car l . delet(a,cdr l); symbolic procedure lx2xx ss; % Transformation from lex. to another normal ordering. begin scalar nm,ct; if domainp ss or domainp car ss then return ss; nm:=cadr ss; ct:=cdr lastnondomain nm; return car ss . (append(xxsort delet(ct,nm),ct) . cddr ss); end; symbolic procedure lastnondomain u; % Return the last non-domain pair of the list u. if domainp u then errach list("non-domain",u) else if domainp cdr u then u else lastnondomain cdr u; symbolic procedure xx2lx ss; % Transformation from normal ordering to lex. begin scalar nm,ct; if domainp ss or domainp car ss then return ss; nm:=cadr ss; ct:=cdr lastnondomain nm; return car ss . (append(lxsort delet(ct,nm),ct) . cddr ss); end; symbolic procedure sf2ss f; % Transformation from sf to ss (with denominator 1). begin scalar vl,vd; if domainp f then return f; vl:=searchpl f; vd:=qsort vl . length vl; return lx2xx(vd . (sq2sspl(f,vd) . 1)); end; symbolic procedure ss2sf s; % Transformation from ss to sf (neglecting the denominator). if domainp s then s else sdl2sq(car s , sdlist cadr xx2lx s ); endmodule; module primfac; % Primitive square free polynomial factorization. % Author: Anthony C. Hearn. % Copyright (c) 1987 The RAND Corporation. All rights reserved. fluid '(!*intfac !*surds dmode!* intvar kernlist!* knowndiscrimsign); symbolic procedure prsqfrfacf u; % U is a non-trivial form which is primitive in all its variables, % is square free, and has a positive leading numerical coefficient. % Result is a list of factors of u, the first a monomial. % We order kernels in increasing powers unless kernlist!* has a % non-NIL value in which case we use that order (needed by SOLVE). % NOTE: For the time being, we bypass this code if the coefficient % domain is other than integer. begin scalar bool,knowndiscrimsign,v,w; if dmode!* then return list(1,u); v := if intvar then list intvar % Integration in effect. else if kernlist!* then kernlist!* else reverse kernord!-sort powers u; % order highest power first. w := setkorder v; u := reorder u; if minusf u then <<bool := t; u := negf u>>; u := factor!-ordered!-sqfree!-prim!-f u; setkorder w; % w := resimp car u; u := for each x in u collect begin v := reorder x; if bool and minusf v then <<v := negf v; bool := nil>>; return v end; if bool then u := negf car u . cdr u; % We couldn't fold the minus sign. return u end; symbolic procedure factor!-ordered!-sqfree!-prim!-f pol; % U is a non-trivial form which is primitive in all its variables, % is square free, has a positive leading numerical coefficient, % and has a main variable of lowest degree in the form. % Result is a list of factors of u, the first a monomial. begin integer n; scalar q,res,w; if ldeg pol = 1 then return factor!-coeffs pol else if univariatep pol then <<while car(q := linfacf pol) do <<res := car q . res; pol := cdr q>>; while car(q := quadfacf pol) do <<res := car q . res; pol := cdr q>>>>; if null pol then return 1 . res else if length(w := special!-case!-factor pol)>2 then <<res := car w . res; % constant. for each j in cdr w do res:=fac!-merge(factor!-ordered!-sqfree!-prim!-f j, res); return res>> else if ldeg pol < 4 or (n := degreegcd pol) = 1 then return 1 . pol . res; w := cdr sort(dfactors n,function lessp); % 1 is always first factor. knowndiscrimsign := 'negative; a: if null w then <<knowndiscrimsign := nil; return 1 . pol . res>> else if length (q := factor!-ordered!-sqfree!-prim!-f downpower(pol,car w))>2 then <<res := car q . res; for each j in cdr q do res := fac!-merge(factor!-ordered!-sqfree!-prim!-f uppower(j,mvar pol,car w), res); knowndiscrimsign := nil; return res>>; w := cdr w; go to a end; symbolic procedure downpower(pol,n); % Reduce the power of each term in pol wrt main variable by factor % n. downpower1(pol,mvar pol,n); symbolic procedure downpower1(pol,mv,n); if domainp pol or not(mvar pol eq mv) then pol else (mv .** (ldeg pol/n)) .* lc pol .+ downpower1(red pol,mv,n); symbolic procedure uppower(pol,var,n); % Raise the power of each term in pol wrt var by factor n. if mvar pol = var then uppower1(pol,var,n) else uppower2(pol,var,n); symbolic procedure uppower1(pol,mv,n); if domainp pol or not(mvar pol eq mv) then pol else (mv .** (ldeg pol*n)) .* lc pol .+ uppower1(red pol,mv,n); symbolic procedure uppower2(pol,var,n); if domainp pol then pol else if mvar pol = var then (mvar pol .** (ldeg pol*n)) .* lc pol .+ uppower2(red pol,var,n) else lpow pol .* uppower2(lc pol,var,n) .+ uppower2(red pol,var,n); symbolic procedure univariatep pol; % True if pol is not a domain element and is univariate with respect % to its main variable. not domainp pol and univariatep1(pol,mvar pol); symbolic procedure univariatep1(pol,mv); domainp pol or mvar pol eq mv and domainp lc pol and univariatep1(red pol,mv); symbolic procedure special!-case!-factor pol; % When integrator calls this, it doesn't want to use the quadratic % code. % (if degree = 2 and (null !*surds or clogflag) then quadraticf pol (if degree = 2 and null !*intfac then quadraticf pol else if degree= 3 then cubicf pol else if degree = 4 then quarticf pol else list(1,pol)) where degree = ldeg pol; symbolic procedure degreegcd pol; % Returns gcd of degrees of pol with respect to main variable. begin integer n; scalar mv; mv := mvar pol; n := ldeg pol; while n>1 and not domainp(pol := red pol) and mvar pol eq mv do n := gcdn(n,ldeg pol); return n end; symbolic procedure factor!-coeffs u; % factor the primitive, square free polynomial U wrt main variable. % dummy for now. list(1,u); endmodule; module specfac; % Splitting of low degree polynomials. % Author: Anthony C. Hearn. % Copyright (c) 1991 RAND. All rights reserved. fluid '(!*keepsqrts !*sub2 !*surds knowndiscrimsign kord!* zlist); % switch surds; exports cubicf,quadraticf,quarticf; symbolic procedure coeffs pol; % Extract coefficients of polynomial wrt its main variable and leading % degree. Result is a list of coefficients. begin integer degree,deg1; scalar cofs,mv; mv := mvar pol; degree := ldeg pol; while not domainp pol and mvar pol eq mv do <<deg1 := ldeg pol; for i:= 1:(degree-deg1-1) do cofs := nil . cofs; cofs := lc pol . cofs; pol := red pol; degree := deg1>>; for i:=1:degree-1 do cofs := nil . cofs; return reversip(pol . cofs) end; symbolic procedure shift!-pol pol; % Shifts main variable, mv, of square free nth degree polynomial pol so % that coefficient of mv**(n-1) is zero. % Does not assume pol is univariate. begin scalar lc1,ld,mv,pol1,redp,shift,x; mv := mvar pol; ld := ldeg pol; redp := red pol; if domainp redp or not(mvar redp eq mv) or ldeg redp<(ld-1) then return list(pol,1,nil ./ 1); lc1 := lc pol; x := lc redp; shift := quotsq(!*f2q x,!*f2q multd(ld,lc1)); pol1 := subf1(pol,list(mv . mk!*sq addsq(!*k2q mv,negsq shift))); return list(numr pol1,denr pol1,shift) end; symbolic procedure quadraticf!*(pol,var); if domainp pol then errach "invalid quadratic to factr" else if mvar pol = var then quadraticf pol else begin scalar kord,w; kord := kord!*; kord!* := list var; w := coeffs !*q2f resimp(pol ./ 1); kord!* := kord; w := quadraticf1(car w,cadr w,caddr w); if w eq 'failed then return list(1,pol); var := !*k2f var; return list(if car w neq 1 then mkrn(1,car w) else 1, addf(multf(var,cadr w),caddr w), addf(multf(var,cadddr w),car cddddr w)) end; symbolic procedure quadraticf pol; % Finds factors of square free quadratic polynomial pol (if they % exist). Does not assume pol is univariate. (if x eq 'failed then list(1,pol) else if not domainp car x then list(1,pol) % Answer would be rational. else list(if car x neq 1 then mkrn(1,car x) else 1, y .* cadr x .+ caddr x,y .* cadddr x .+ car cddddr x) where y = (mvar pol .** 1)) where x = quadraticf1(car w,cadr w,caddr w) where w = coeffs pol; symbolic procedure quadraticf1(a,b,c); begin scalar a1,denom,discrim,w; if null b and minusf c and not minusf a then <<a := rootxf(a,2); c := rootxf(negf c,2); return if a eq 'failed or c eq 'failed then 'failed else list(1,a,c,a,negf c)>>; discrim := powsubsf addf(exptf(b,2),multd(-4,multf(a,c))); % A null discriminator can arise from a polynomial such as % 16x^2+(32i-8)*x-8i-15; if null discrim then nil else <<if knowndiscrimsign then <<if knowndiscrimsign eq 'negative then return 'failed>> % else if not clogflag and minusf discrim % then return 'failed; else if minusf discrim then return 'failed; discrim:=rootxf(discrim,2); if discrim='failed then return discrim>>; denom := multd(4,a); a := a1 := multd(2,a); w := addf(b,discrim); c := addf(b,negf discrim); b := w; if (w := gcdf(a,b)) neq 1 then <<a1 := quotf(a,w); b := quotf(b,w); denom := quotf(denom,w)>>; if (w := gcdf(a,denom)) neq 1 and (w := gcdf(c,denom)) then <<a := quotf(a,w); c := quotf(c,w); denom := quotf(denom,w)>>; return list(denom,a1,b,a,c) end; symbolic procedure rootxf(u,n); % Return either polynomial nth root of u or "failed". begin scalar x,y,z,w; if domainp u then return if minusf u then 'failed else if atom u and (y := irootn(u,n))**n=u then y else if not atom u and (x := get(car u,'rootfn)) then apply2(x,u,n) else if !*surds and not(u member zlist) then nrootn!*(u,n) else 'failed; x := comfac u; u := quotf(u,comfac!-to!-poly x); z := 1; if car x then if cdr(y := divide(cdar x,n)) = 0 then z := multpf(caar x .** car y,z) else if !*surds then <<z := multf(mkrootf(caar x,n,cdr y),z); if car y neq 0 then z := multpf(caar x .** car y,z)>> else return 'failed; x := cdr x; if domainp x then if minusf x then return 'failed else if fixp x and (y := irootn(x,n))**n=x then z := multd(y,z) else if !*surds and fixp x then z := multf(nrootn!*(x,n),z) else if not atom x and (w := get(car x,'rootfn)) then apply2(w,x,n) else return 'failed else if (y := rootxf(x,n)) eq 'failed then return y else z := multf(y,z); if u=1 then return z; x := sqfrf u; c: if null x then return z else if cdr(y := divide(cdar x,n)) = 0 then <<z := multf(exptf(caar x,car y),z); x := cdr x>> else if !*surds then <<z := multf(mkrootf(prepf caar x,n,cdr y), multf(exptf(caar x,car y),z)); x := cdr x>> else return 'failed; go to c end; symbolic procedure mkrootf(u,m,n); if m neq 2 or null !*keepsqrts then !*p2f mksp(list('expt,u,list('quotient,1,m)),n) else if n neq 1 then errach 'mkrootf else !*q2f simpsqrt list u; symbolic procedure nrootn!*(u,n); % Returns a standard form representation of the nth root of u. begin scalar x; if null u then return nil; u := nrootn(u,n); x := cdr u; % surd part. u := car u; % rational part. if x=1 then return x; x := mkrootf(prepf x,n,1); return powsubsf multf(u,x) end; symbolic procedure cubicf pol; % Split the cubic pol if a change of origin puts it in the form % (x-a)**3-b=0. begin scalar a,a0,a1,b,neg,p; p := shift!-pol pol; a := coeffs car p; if cadr a then return list(1,pol) % Cadr a non nil probably means there are some surds in the % coefficients that don't reduce to 0. else if caddr a then return list(1,pol); % Factorization not possible by this method. a0 := cadddr a; a := car a; if minusf a0 then <<neg := t; a0 := negf a0>>; if (a := rootxf(a,3)) eq 'failed or (a0 := rootxf(a0,3)) eq 'failed then return list(1,pol); if neg then a0 := negf a0; a := !*f2q a; a0 := !*f2q a0; p := addsq(!*k2q mvar pol,caddr p); % Now numr (a*(mv+shift)+a0) is a factor of pol. a1 := numr addsq(multsq(a,p),a0); % quotf(pol,a) is quadratic factor. However, the surd division may % not work properly, so we calculate factor directly. b := multsq(a0,a0); b := addsq(b,multsq(negsq multsq(a,a0),p)); b := numr addsq(b,multsq(multsq(a,a),exptsq(p,2))); return aconc!*(quadraticf b,a1) end; symbolic procedure powsubsf u; % We believe that the result of this operation must be a polynomial. % If subs2q returns a rational, it must be because there are % unsimplified surds. Hopefully rationalizesq can fix those. begin scalar !*sub2; u := subs2q !*f2q u; if denr u neq 1 then <<u := rationalizesq u; if denr u neq 1 then errach list('powsubsf,u)>>; return numr u end; symbolic procedure quarticf pol; % Splits quartics that can be written in the form % (x-a)**4+b*(x-a)**2+c. begin scalar !*sub2,a,a2,a0,b,dsc,p,p1,p2,q,shift,var; var := mvar pol; p := shift!-pol pol; a := coeffs car p; shift := caddr p; if cadr a then rerror(poly,16,list(pol,"not correctly shifted")) else if cadddr a then return list(1,pol); % Factorization not possible by this method. a2 := cddr a; a0 := caddr a2; a2 := car a2; a := car a; q := quadraticf1(a,a2,a0); if not(q eq 'failed) then <<a2 := car q; q := cdr q; a := exptsq(addsq(!*k2q mvar pol,shift),2); b := numr subs2q quotsq(addsq(multsq(!*f2q car q,a), !*f2q cadr q), !*f2q cadr p); a := numr subs2q quotsq(addsq(multsq(!*f2q caddr q,a), !*f2q cadddr q), !*f2q cadr p); a := quadraticf!*(a,var); b := quadraticf!*(b,var); return multf(a2,multf(car a,car b)) . nconc!*(cdr a,cdr b)>> else if null !*surds or denr shift neq 1 then return list(1,pol); % Factorization not possible by this method. shift := numr shift; if knowndiscrimsign eq 'negative then go to complex; dsc := powsubsf addf(exptf(a2,2),multd(-4,multf(a,a0))); p2 := minusf a0; if not p2 and minusf dsc then go to complex; p1 := not a2 or minusf a2; if not p1 then if p2 then p1 := t else p2 := t; p1 := if p1 then 'positive else 'negative; p2 := if p2 then 'negative else 'positive; a := rootxf(a,2); dsc := rootxf(dsc,2); p := invsq !*f2q addf(a,a); q := multsq(!*f2q addf(a2,negf dsc),p); p := multsq(!*f2q addf(a2,dsc),p); b := multf(a,exptf(addf(!*k2f mvar pol,shift),2)); a := powsubsf addf(b,q); b := powsubsf addf(b,p); knowndiscrimsign := p1; a := quadraticf!*(a,var); knowndiscrimsign := p2; b := quadraticf!*(b,var); knowndiscrimsign := nil; return multf(car a,car b) . nconc!*(cdr a,cdr b); % Complex case. complex: a := rootxf(a,2); a0 := rootxf(a0,2); a2 := powsubsf addf(multf(2,multf(a,a0)),negf a2); a2 := rootxf(a2,2); % Now a*(x+shift)**2 (+/-) b*(x+shift) + c is a factor. p := addf(!*k2f mvar pol,shift); q := addf(multf(a,exptf(p,2)),a0); p := multf(a2,p); a := powsubsf addf(q,p); b := powsubsf addf(q,negf p); knowndiscrimsign := 'negative; a := quadraticf!*(a,var); b := quadraticf!*(b,var); knowndiscrimsign := nil; return multf(car a,car b) . nconc!*(cdr a,cdr b) end; endmodule; module kronf; % Kronecker factorization of univariate forms. % Author: Anthony C. Hearn. % Based on code first written by Mary Ann Moore and Arthur C. Norman. % Copyright (c) 1987 The RAND Corporation. All rights reserved. % exports linfacf,quadfacf; % imports zfactor; % Note that only linear and quadratic factors are found here. symbolic procedure linfacf u; trykrf(u,'(0 1)); symbolic procedure quadfacf u; trykrf(u,'(-1 0 1)); symbolic procedure trykrf(u,points); % Look for factor of u by evaluation at points and interpolation. % Return (fac . cofac), with fac = nil if none found, % and cofac = nil if nothing worthwhile is left. begin scalar attempt,mv,values; if null u then return nil . nil else if length points > ldeg u then return nil . u; % Degree is too small to find factors. mv := mvar u; values := for each j in points collect subuf(j,u); if 0 member values then <<attempt := ((mv .** 1) .* 1) . -1; % mv - 1 return attempt . quotf(u,attempt)>>; values := for each j in values collect dfactors j; values := for each j in values collect append(j,for each k in j collect !:minus k); attempt := search4facf(u,values,nil); if null attempt then attempt := nil . u; return attempt end; symbolic procedure subuf(u,v); % Substitute integer u for main variable in univariate polynomial v. % Return an integer or a structured domain element. begin scalar z; if u=0 then u := nil; z := nil; while v do if domainp v then <<z := adddm!*(v,z); v := nil>> else <<if u then z := adddm!*(multdm!*(u**ldeg v,lc v),z); % we should do better here. v := red v>>; return if null z then 0 else z end; symbolic procedure adddm!*(u,v); % Adds two domain elements u and v, returning a standard form. if null u then v else if null v then u else adddm(u,v); symbolic procedure multdm!*(u,v); % Multiplies two domain elements u and v, returning a standard form. if null u or null v then nil else multdm(u,v); symbolic procedure dfactors n; % Produces a list of all (positive) factors of the domain element n. begin scalar x; if n=0 then return list 0 else if n=1 then return list 1 else if !:minusp n then n := !:minus n; return if not atom n then if (x := get(car n,'factorfn)) then combinationtimes apply1(x,n) else list n else combinationtimes zfactor n end; symbolic procedure combinationtimes fl; if null fl then list 1 else begin scalar n,c,res,pr; n := caar fl; c := cdar fl; pr := combinationtimes cdr fl; while c>=0 do <<res := putin(expt(n,c),pr,res); c := c-1>>; return res end; symbolic procedure putin(n,l,w); if null l then w else putin(n,cdr l,(n*car l) . w); symbolic procedure search4facf(u,values,cv); % combinatorial search for factors. cv gets current value set. if null values then tryfactorf(u,cv) else begin scalar q,w; w := car values; loop: if null w then return nil; % no factor found q := search4facf(u,cdr values,car w . cv); if null q then <<w := cdr w; go to loop>>; return q end; symbolic procedure tryfactorf(u,cv); % Tests if cv represents a factor of u. % For the time being, does not work on structured domain elements. begin scalar w; if null atomlis cv then return nil; if null cddr cv then w := linethroughf(cadr cv,car cv,mvar u) else w := quadthroughf(caddr cv,cadr cv,car cv,mvar u); if w eq 'failed or null (u := quotf(u,w)) then return nil else return w . u end; symbolic procedure linethroughf(y0,y1,mv); begin scalar x; x := y1-y0; if x=0 then return 'failed else if x<0 then <<x:= -x; y0 := -y0>>; return if y0 = 0 or gcdn(x,y0) neq 1 then 'failed else (mv .** 1) .* x .+ y0 end; symbolic procedure quadthroughf(ym1,y0,y1,mv); begin scalar x,y,z; x := divide(ym1+y1,2); if cdr x=0 then x := car x-y0 else return 'failed; if x=0 then return 'failed; z := y0; y := divide(y1-ym1,2); if cdr y=0 then y := car y else return 'failed; if gcdn(x,gcdn(y,z)) neq 1 then return 'failed; if x<0 then <<x := -x; y := -y; z := -z>>; if z=0 then return 'failed else if y=0 then return ((mv .** 2) .* x) .+ z else return ((mv .** 2) .* x) .+ (((mv .** 1) .* y) .+ z) end; endmodule; module conj; % Rationalize denoms of standard quotients by conjugate % computation. % Author: Anthony C. Hearn. % Modifications by: Eberhard Schruefer. % Copyright (c) 1992 RAND. All rights reserved. fluid '(!*rationalize !*structure dmode!* kord!*); put('rationalize,'simpfg,'((t (rmsubs)) (nil (rmsubs)))); symbolic smacro procedure subtrf(u,v); % Returns u - v for standard forms u and v. addf(u,negf v); symbolic procedure rationalizesq u; % Rationalize the standard quotient u. begin scalar !*structure,!*sub2,x; % Modified by R. Liska. % We need structure off to form rationalized denominator properly % in subs2f1. if x := get(dmode!*,'rationalizefn) then u := apply1(x,u); u := subs2q u; % We need the subs2 to get rid of surd powers. return if domainp denr u then u else if (x := rationalizef denr u) neq 1 then rationalizesq exptchksq subs2q (multf(numr u,x) ./ multf(denr u,x)) else u end; symbolic procedure lowertowerp(u,v); % True if v is potentially an algebraic component of a member of v. if null u then nil else if atom car u or cdar u = v then lowertowerp(cdr u,v) else if caar u eq 'expt and eqcar(caddar u,'quotient) and cadr caddar u = cadr cadr v % numerator of quotient. and fixp caddr caddar u and fixp caddr cadr v and cdr divide(caddr caddar u,caddr cadr v) = 0 % denominator. and lowertowerp1(cadar u,car v) then car u else lowertowerp(cdr u,v); symbolic procedure lowertowerp1(u,v); % This procedure decides if u can be an algebraic extension of v. % The = case is decidedly heuristic at the moment. % We could think of this as a membership test (including =). % However, different SQRT representations complicate things. (if x>y then t else if numberp u and numberp v then not(gcdn(u,v)=1) else x=y) where x=exprsize u,y=exprsize v; symbolic procedure exprsize u; % Get size of u. Iterative to avoid excessive recursion. begin integer n; a: if null u then return n else if atom u then return n+1; n := exprsize car u + n; u := cdr u; go to a end; symbolic procedure rationalizef u; % Look for I and sqrts, cbrts, quartics at present. % I'm not sure I in the presence of (-1)^(1/4) say is handled % properly. % It is assumed that any surd powers have been reduced before % entering this procedure. begin scalar x,y,z; x := z := kernels u; a: if null x then return 1; y := car x; if eqcar(y,'expt) and eqcar(caddr y,'quotient) and lowertowerp(z,cdr y) then nil else if y eq 'i or eqcar(y,'expt) and caddr y = '(quotient 1 2) or eqcar(y,'sqrt) then return conjquadratic(mkmain(u,y),y) else if eqcar(y,'expt) and caddr y = '(quotient 1 3) then return conjcubic(mkmain(u,y),y) else if eqcar(y,'expt) and caddr y = '(quotient 1 4) then return conjquartic(mkmain(u,y),y); x := cdr x; go to a end; symbolic procedure conjquadratic(u,v); if ldeg u = 1 then subtrf(multf(!*k2f v,reorder lc u),reorder red u) else errach list(ldeg u,"invalid power in rationalizef"); symbolic procedure conjcubic(u,v); begin scalar c1,c2,c3,w; if ldeg u = 2 then <<c1 := reorder lc u; if degr(red u,v) = 1 then <<c2 := reorder lc red u; c3 := reorder red red u>> else c3 := reorder red u>> else <<c2 := reorder lc u; c3 := reorder red u>>; w := conj2 v; if w eq 'failed then return u; v := !*k2f v; return addf(multf(exptf(v,2),subtrf(exptf(c2,2),multf(c1,c3))), addf(multf(v,subtrf(multf(w,exptf(c1,2)), multf(c2,c3))), subtrf(exptf(c3,2),multf(w,multf(c1,c2))))) end; symbolic procedure conj2 u; % (if not domainp denr v then errach list("conj2",u) (if not domainp denr v then 'failed else if denr v neq 1 then multd(!:recip denr v,numr v) else numr v) where v = simp cadr u; symbolic procedure conjquartic(u,v); begin scalar c1,c3,c4,q1,q2,q3,q4,w; if ldeg u = 3 then <<c1 := reorder lc u; if degr(red u,v) = 1 then <<c3 := reorder lc red u; c4 := reorder red red u>> else c4 := reorder red u>> else if ldeg u = 1 then <<c3 := reorder lc u; c4 := reorder red u>>; w := conj2 v; if w eq 'failed then return u; v := !*k2f v; q1 := subtrf(addf(exptf(c3,3),multf(c1,exptf(c4,2))), multf(w,multf(c3,exptf(c1,2)))); q2 := negf addf(multf(w,multf(c4,exptf(c1,2))), multf(exptf(c3,2),c4)); q3 := addf(multf(c3,exptf(c4,2)), subtrf(multf(exptf(w,2),exptf(c1,3)), multf(w,multf(c1,exptf(c3,2))))); q4 := subtrf(multf(w,multf(multd(2,c1),multf(c3,c4))),exptf(c4,3)); return addf(multf(exptf(v,3),q1), addf(multf(exptf(v,2),q2),addf(multf(v,q3),q4))) end; symbolic procedure mkmain(u,var); % Make kernel var the main variable of u. begin scalar kord!*; kord!* := list var; return reorder u end; endmodule; module diff; % Differentiation package. % Author: Anthony C. Hearn. % Copyright (c) 1991 RAND. All rights reserved. fluid '(!*allowdfint !*fjwflag frlis!* subfg!* wtl!*); global '(mcond!* powlis!*); % Contains a reference to RPLACD (a table update), commented out. symbolic procedure simpdf u; % U is a list of forms, the first an expression and the remainder % kernels and numbers. % Value is derivative of first form wrt rest of list. begin scalar v,x,y; if null subfg!* then return mksq('df . u,1); v := cdr u; u := simp!* car u; a: if null v or null numr u then return u; x := if null y or y=0 then simp!* car v else y; if denr x neq 1 or atom numr x then typerr(prepsq x,"kernel") else (if domainp z then if get(car z,'domain!-diff!-fn) then begin scalar dmode!*,alglist!*; x := prepf z; if null prekernp x then typerr(x,"kernel") end else typerr(prepf z,"kernel") else if null red z and lc z = 1 and ldeg z = 1 then x := mvar z else typerr(prepf z,"kernel")) where z = numr x; v := cdr v; if null v then <<u := diffsq(u,x); go to a>>; y := simp!* car v; if null numr y then <<v := cdr v; y := nil; go to a>> else if not(denr y=1) or not numberp numr y then <<u := diffsq(u,x); go to a>>; v := cdr v; for i:=1:car y do u := diffsq(u,x); y := nil; go to a end; put('df,'simpfn,'simpdf); symbolic procedure prekernp u; if atom u then idp u else idp car u and null((car u memq '(plus minus times quotient recip)) or ((car u eq 'expt) and fixp caddr u)); symbolic procedure diffsq(u,v); % U is a standard quotient, V a kernel. % Value is the standard quotient derivative of U wrt V. % Algorithm: df(x/y,z)= (x'-(x/y)*y')/y. multsq(addsq(difff(numr u,v),negsq multsq(u,difff(denr u,v))), 1 ./ denr u); symbolic procedure difff(u,v); %U is a standard form, V a kernel. %Value is the standard quotient derivative of U wrt V. % Allow for differentiable domains. if atom u then nil ./ 1 else if atom car u then (if diff!-fn then apply2(diff!-fn,u,v) else nil ./ 1) where (diff!-fn = get(car u,'domain!-diff!-fn)) else addsq(addsq(multpq(lpow u,difff(lc u,v)), multsq(diffp(lpow u,v),lc u ./ 1)), difff(red u,v)); symbolic procedure diffp(u,v); % U is a standard power, V a kernel. % Value is the standard quotient derivative of U wrt V. begin scalar n,w,x,y,z; integer m; n := cdr u; % integer power. u := car u; % main variable. if u eq v and (w := 1 ./ 1) then go to e else if atom u then go to f %else if (x := assoc(u,dsubl!*)) and (x := atsoc(v,cdr x)) % and (w := cdr x) then go to e % deriv known. % DSUBL!* not used for now. else if (not atom car u and (w:= difff(u,v))) or (car u eq '!*sq and (w:= diffsq(cadr u,v))) then go to c % extended kernel found. else if x := get(car u,'dfform) then return apply3(x,u,v,n) else if x:= get(car u,dfn_prop u) then nil else if car u eq 'plus and (w := diffsq(simp u,v)) then go to c else go to h; % unknown derivative. y := x; z := cdr u; a: w := diffsq(simp car z,v) . w; if caar w and null car y then go to h; % unknown deriv. y := cdr y; z := cdr z; if z and y then go to a else if z or y then go to h; % arguments do not match. y := reverse w; z := cdr u; w := nil ./ 1; b: % computation of kernel derivative. if caar y then w := addsq(multsq(car y,simp subla(pair(caar x,z), cdar x)), w); x := cdr x; y := cdr y; if y then go to b; c: % save calculated deriv in case it is used again. % if x := atsoc(u,dsubl!*) then go to d % else x := u . nil; % dsubl!* := x . dsubl!*; % d: rplacd(x,xadd(v . w,cdr x,t)); e: % allowance for power. % first check to see if kernel has weight. if (x := atsoc(u,wtl!*)) then w := multpq('k!* .** (-cdr x),w); m := n-1; % Evaluation is far more efficient if results are rationalized. return rationalizesq if n=1 then w else if flagp(dmode!*,'convert) and null(n := int!-equiv!-chk apply1(get(dmode!*,'i2d),n)) then nil ./ 1 else multsq(!*t2q((u .** m) .* n),w); f: % Check for possible unused substitution rule. if not depends(u,v) and (not (x:= atsoc(u,powlis!*)) or not depends(cadddr x,v)) then return nil ./ 1; w := list('df,u,v); w := if x := opmtch w then simp x else mksq(w,1); go to e; h: % Final check for possible kernel deriv. if car u eq 'df then if depends(cadr u,v) and not(cadr u eq v) % (df (df v A) v) ==> 0 then <<if !*fjwflag and eqcar(cadr u, 'int) then % (df (df (int F x) A) v) ==> (df (df (int F x) v) A) ? % Commute the derivatives to differentiate the integral? if caddr cadr u eq v then % Evaluating (df u v) where u = (df (int F v) A) % Just return (df F A) - derivative absorbed << w := 'df . cadr cadr u . cddr u; go to j >> else if !*allowdfint and % Evaluating (df u v) where u = (df (int F x) A) % Commute only if the result simplifies: not_df_p(w := diffsq(simp!* cadr cadr u, v)) then << % Generally must re-evaluate the integral (carefully!) w := aeval{'int, mk!*sq w, caddr cadr u} . cddr u; go to j >>; % derivative absorbed if (x := find_sub_df(w:= cadr u . derad(v,cddr u), get('df,'kvalue))) then <<w := simp car x; for each el in cdr x do for i := 1:cdr el do w := diffsq(w,car el); go to e>> else w := 'df . w >> else return nil ./ 1 else w := list('df,u,v); j: if (x := opmtch w) then w := simp x else if not depends(u,v) then return nil ./ 1 else w := mksq(w,1); go to e end; % Compute a dfn-property name corresponding to the argument number % of an operator expression. Here we assume that most functions % will have not more than 3 arguments. symbolic procedure dfn_prop(w); (if n=1 then 'dfn else if n=2 then 'dfn2 else if n=3 then 'dfn3 else mkid('dfn,n)) where n=length cdr w; % The following three functions, and the hooks to this code above, were % suggested by Gerhard Post and Marcel Roelofs. symbolic procedure find_sub_df(df_args,df_values); df_values and (is_sub_df(df_args,car df_values) or find_sub_df(df_args,cdr df_values)); symbolic procedure is_sub_df(df_args,df_value); begin scalar df_set,kernel,n,entry; if car(df_args) neq cadar(df_value) then return nil; % check fns. df_args := dot_df_args cdr df_args; df_set := cddar df_value; while df_set and df_args do % Check differentiations. <<kernel := car df_set; if cdr df_set and fixp(n := cadr df_set) then df_set := cdr df_set else n := 1; if (entry := atsoc(kernel,df_args)) and (n := cdr entry-n) geq 0 then rplacd(entry,n) else df_args:=nil; df_set := cdr df_set>>; return if df_args then (cadr(df_value) . df_args); end; symbolic procedure dot_df_args l; begin scalar kernel,n,df_args; while l do <<kernel := car l; if cdr l and fixp(n := cadr l) then l := cdr l else n := 1; df_args := (kernel . n) . df_args; l := cdr l>>; return df_args; end; symbolic procedure derad(u,v); if null v then list u else if numberp car v then car v . derad(u,cdr v) else if u=car v then if cdr v and numberp cadr v then u . (cadr v + 1) . cddr v else u . 2 . cdr v else if ordp(u,car v) then u . v else car v . derad(u,cdr v); symbolic procedure letdf(u,v,w,x,b); begin scalar y,z,dfn; if atom cadr x then go to b else if not idp caadr x then typerr(caadr x,"operator") else if not get(caadr x,'simpfn) then <<redmsg(caadr x,"operator"); mkop caadr x>>; rmsubs(); dfn := dfn_prop cadr x; if not(mcond!* eq 't) or not frlp cdadr x or null cddr x or cdddr x or not frlp cddr x or not idlistp cdadr x or repeats cdadr x or not(caddr x member cdadr x) then go to b; z := lpos(caddr x,cdadr x); if not get(caadr x,dfn) then put(caadr x, dfn, nlist(nil,length cdadr x)); w := get(caadr x,dfn); if length w neq length cdadr x then rerror(poly,17, list("Incompatible DF rule argument length for", caadr x)); a: if null w or z=0 then return errpri1 u else if z neq 1 then <<y := car w . y; w := cdr w; z := z-1; go to a>> else if null b then y := append(reverse y,nil . cdr w) else y := append(reverse y,(cdadr x . v) . cdr w); return put(caadr x,dfn,y); b: %check for dependency; if caddr x memq frlis!* then return nil else if idp cadr x and not(cadr x memq frlis!*) then depend1(cadr x,caddr x,t) else if not atom cadr x and idp caadr x and frlp cdadr x then depend1(caadr x,caddr x,t); return nil end; symbolic procedure frlp u; null u or (car u memq frlis!* and frlp cdr u); symbolic procedure lpos(u,v); if u eq car v then 1 else lpos(u,cdr v)+1; endmodule; module polyop; % Functions for algebraic mode operations on polynomials. % Author: Anthony C. Hearn. % Modified by: F. Kako, F.J. Wright. % Copyright (c) 1995 RAND. All rights reserved. % This code has been modified to be consistent with the rules % lterm(f,x) = lcof(f,x)*lpower(f,x) % f = lterm(f,x) + reduct(f,x) fluid '(!*ratarg gdmode!*); symbolic procedure deg(u,kern); <<u := simp!* u; tstpolyarg(denr u,u); numrdeg(numr u,kern)>> where dmode!* = gdmode!*; symbolic procedure numrdeg(u,kern); begin scalar x; kern := !*a2k kern; if domainp u then return 0 else if mvar u eq kern then return !*f2a ldeg u; x := updkorder kern; u := reorder u; if not(mvar u eq kern) then u := 0 else u := ldeg u; setkorder x; % return !*f2a u return u end; symbolic procedure lcofeval u; begin scalar kern,x,y; if null u or null cdr u or not null cddr u then rerror(poly,280, "LCOF called with wrong number of arguments"); kern := !*a2k cadr u; u := simp!* car u; y := denr u; tstpolyarg(y,u); u := numr u; if domainp u then return if null u then 0 else u else if mvar u eq kern then return !*ff2a(lc u,y); x := updkorder kern; u := reorder u; if mvar u eq kern then u := lc u; setkorder x; return if null u then 0 else !*ff2a(u,y) end; put('lcof,'psopfn,'lcofeval); % Note. This is an older definition still used by some packages. symbolic procedure lcof(u,kern); begin scalar x,y; u := simp!* u; y := denr u; tstpolyarg(y,u); u := numr u; kern := !*a2k kern; if domainp u then return 0 else if mvar u eq kern then return !*ff2a(lc u,y); x := updkorder kern; u := reorder u; if mvar u eq kern then u := lc u; setkorder x; return if null u then 0 else !*ff2a(u,y) end; symbolic procedure lpower(u,kern); begin scalar x,y; u := simp!* u; y := denr u; tstpolyarg(y,u); u := numr u; kern := !*a2k kern; if domainp u then return 1 else if mvar u eq kern then return !*ff2a(lpow u.*1 .+ nil,y); x := updkorder kern; u := reorder u; if mvar u eq kern then u := lpow u.*1 .+ nil else u := 1; setkorder x; return !*ff2a(u,y) end; symbolic procedure lterm(u,kern); begin scalar x,y; u := simp!* u; y := denr u; tstpolyarg(y,u); u := numr u; kern := !*a2k kern; if domainp u then return if null u then 0 else u else if mvar u eq kern then return !*ff2a(lt u .+ nil,y); x := updkorder kern; u := reorder u; % if mvar u eq kern then u := lt u .+ nil else u := nil; if mvar u eq kern then u := lt u .+ nil; setkorder x; u := reorder u; return !*ff2a(u,y) end; % symbolic procedure !*lterm u; lt u .+ nil; symbolic procedure mainvar u; if domainp(u := numr simp!* u) then 0 else sfchk(u := mvar u); symbolic procedure sfchk u; if sfp u then prepf u else u; symbolic procedure reduct(u,kern); begin scalar x,y; u := simp!* u; y := denr u; tstpolyarg(y,u); u := numr u; kern := !*a2k kern; % if domainp u then return !*ff2a(u,y) if domainp u then return 0 else if mvar u eq kern then return !*ff2a(cdr u,y); x := updkorder kern; u := reorder u; % if mvar u eq kern then u := cdr u; if mvar u eq kern then u := cdr u else u := nil; setkorder x; u := reorder u; return !*ff2a(u,y) end; symbolic procedure tstpolyarg(y,u); null !*ratarg and y neq 1 and typerr(prepsq u,"polynomial"); % symbolic operator deg,lpower,lterm,mainvar,reduct; flag('(deg lpower lterm mainvar reduct),'opfn); % This way for booting. endmodule; module decompose; % Decomposition of polynomials f(x) = g(h(x)). % Author: Herbert Melenk <melenk@sc.zib-berlin.de>. % Algorithms: 1. univariate case: % V.S. Alagar, M.Tanh: Fast Polynomial Decomposition % Algorithms, EUROCAL 1985, pp 150-153 (Springer). % % 2. multivariate lifting: % J. von zur Gathen: Functional Decomposition of Polynomials: % the Tame Case, J. Symbolic Computation (1990) 9, 281-299. % Copyright (c) 1990 ZIB. % % 1-July-93 Replaced gensym calls by local name generator. % Otherwise decompose may produce different results % for identical input. % 29-Apr.-93: completed normalization of multivariate results: % shifting sign and content (field: leading coefficient) % and absolute term to the 1st form. global '(decomposegensym!*); put('decompose,'psopfn,'decomposesf); symbolic procedure decomposesf f; 'list . reverse decomposef2(simp reval car f,t) where !*factor=nil,!*exp=t; symbolic procedure decomposef1(f,msg); decomposef2(f ./ 1 ,msg); symbolic procedure decomposef2(f,msg); begin scalar hvars,r,rr,x,y,u,vars,newvars,d; decomposegensym!*:=1000; vars := decomposesfvars(numr f,nil); newvars := for each x in vars collect decomposegensym(); d := denr f; if not domainp d then rerror(poly,18,typerr(prepsq f,"polynomial")); f := numr subf(numr f,pair(vars,newvars)); if length vars = 1 then r := decomposesfuni0 f else r := decomposesfmulti(f,newvars); hvars := '(u v w a b c d e); for each x in vars do hvars := delete (x,hvars); while r do <<if cdr r then <<y := x; x := nil; while null x do if hvars then <<x := car hvars; hvars := cdr hvars; if not(x=reval x) then x := nil>> else x:=decomposegensym(); u := prepsq subsq(car r,list(mvar numr car r . x)); if d neq 1 then<<u:=list('quotient,u,prepf d);d:=1>>; rr := (if y then list('equal,y,u) else u) . rr>> else <<u := prepsq car r; y := x; rr := (if y then list('equal,y,u) else u) . rr>>; r := cdr r>>; rr := subla(pair(newvars,vars),car rr) . cdr rr; return rr end; symbolic procedure decomposesfvars(f,v); % Select the kernels from a standard form. if domainp f then v else decomposesfvars(red f, decomposesfvars(lc f, if not member(mvar f,v) then append(v,list mvar f) else v)); symbolic procedure decomposesfuni0 f; for each p in decomposesfuni f collect (p ./ 1); symbolic procedure decomposesfuni f; % Univariate variant. begin scalar x,y,res,ddfl,h,testf; integer n; n := ldeg f; if primep n then return list f; x := mvar f; y := decomposegensym(); ddfl := decomposefctrf decomposedf(f,x); if length ddfl > 1 then for each d in ddfl do if null res and 0=remainder(n , (ldeg d + 1)) then <<h := numr decomposeint(d,x); if null testf then testf := addf(f,negf numr subf(f,list(x . y))); if quotf (testf, addf(h,negf numr subf(h,list(x . y)))) then res := list(decomposebacksubstuni(f,h,x),h); if res and ldeg car res<2 then res:=nil; >>; if null res then return list f else return for each u in res join decomposesfuni u end; symbolic procedure decomposefctrf f; % Generate all factors of f by combining the prime factors. begin scalar u,w,q; q := fctrf f; u:= cdr q; if length u = 1 and cdar u=1 then return list f; % eliminate the two trivial factors. w := delete(quotf(f,car q),decomposefctrf1 u); w := delete(1,w); return w; end; symbolic procedure decomposefctrf1 v; % Collect all possible crossproducts from v. if null v then '(1) else begin scalar r,c,q; c:=car v; r:=decomposefctrf1 cdr v; q:=for i:=1:cdr c collect exptf(car c,i); return append(r, for each u in q join for each p in r collect multf(u,p) ); end; symbolic procedure decomposebacksubstuni(f,h,x); begin scalar c,g,n,p,pars,ansatz,eqs; p := 1; n := ldeg f/ldeg h; for i:=0:n do <<c := mkid('coeff,i); pars := c . pars; ansatz := addf(multf(numr simp c,p) , ansatz); p := multf(p,h); >>; pars := reverse pars; ansatz := addf(f , negf ansatz); eqs := decomposecoeff(ansatz,list x); eqs := solveeval list('list . for each u in eqs collect prepf u, 'list . pars); eqs := cdr cadr eqs; % select the only solution. for i:= 0:n do g := addf(g,numr simp list('times,list('expt,x,i), caddr nth(eqs,i+1))); return g end; symbolic procedure decomposedf(f,x); % Differentiate a polynomial wrt top-level variable x. % Returns a standard form. if domainp f or not(mvar f = x) then nil else if ldeg f = 1 then lc f else mvar f .** (ldeg f - 1) .* multf(lc f,ldeg f) .+ decomposedf(red f,x); symbolic procedure decomposeint(f,x); % Integrate a polynomial (standard form) wrt the (main-)variable x. % Returns a standard quotient. if null f then nil ./ 1 else if domainp f then (x .** 1 .* f .+ nil) ./ 1 else addsq(multsq((x .** (ldeg f + 1) .* 1 .+ nil)./ 1 , multsq(lc f./1,1 ./ldeg f+1)) , decomposeint(red f,x)); symbolic procedure decomposecoeff(f,vars); % Select the coefficients of f wrt vars. begin scalar o; o := setkorder vars; f := reorder f; setkorder o; return decomposecoeff1(f,vars) end; symbolic procedure decomposecoeff1(f,vars); if domainp f then nil else if not member(mvar f,vars) then list f else nconc(decomposecoeff1(lc f,vars),decomposecoeff1(red f,vars)); symbolic procedure decomposetdg f; % calculate total degree if domainp f then 0 else max(ldeg f + decomposetdg lc f, decomposetdg red f); symbolic procedure decomposedegr(f,vl); if domainp f then vl else <<if ldeg f > cdr v then cdr v := ldeg f; decomposedegr(lc f,vl); decomposedegr(red f,vl); vl>> where v = assoc(mvar f,vl); symbolic procedure compose (u,v); % Calculate f(x)=u(v(x)) for standard forms u,v. if domainp u then u else numr subf(u,list(mvar u . prepf v)); % Multivariate polynomial decomposition. % % Technique: % select a field as domain (rational), % map f to a strongly monic polynomial by variable transform, % map f to a univariate image, % decompose the univariate polynomial, % lift decomposition to multivariate, % convert back to original variables, % transform back to original domain (if possible). symbolic procedure decomposesfmulti(f,vars); % Multivariant case: map to field (rationals). begin scalar dm,ft,r,rr,a,q,c,p1,p2; if null dmode!* or not flagp(dmode!*,'field) then <<setdmode('rational,t) where !*msg=nil; dm := t; ft := !*q2f resimp !*f2q f>> else ft := f; r := decomposesfmulti1(ft,vars); if dm then setdmode('rational,nil) where !*msg=nil; if null cdr r then return list(f./1); % if null dm then return % for each p in r collect (p ./ 1); % Convert back to integer polynomials. rr := for each p in reverse r collect simp prepf p; r := nil; while rr and cdr rr do <<p1 := car rr; p2 := cadr rr; % Propagate absolute term and content from p1 to p2. q := denr p1; a := numr p1; while not domainp a do a := red a; p1 := addf(numr p1,negf a); c := decomposenormfac p1; p1 := multsq(p1 ./ 1, 1 ./ c); p2 := subsq(p2,list(mvar numr p2 . list('quotient, list('plus,list('times,decomposegensym(),prepf c), prepf a), prepf q))); r := p1 . r; rr := p2 . cddr rr>>; return car rr . r; end; symbolic procedure decomposesfmulti1(f,vars); % Multivariate case: map to strongly monic polynomial. begin scalar lvars,ft,rt,x1,a0,kord,u,sigma; integer n,m; % get the variable with highest degree as main variable. u := decomposedegr(f,for each x in vars collect (x. 0)); n := -1; for each x in u do if n<cdr x then <<n:=cdr x; x1 := car x>>; if n<2 then return list f; vars := x1 . delete(x1,vars); kord := setkorder vars; f := reorder f; % Convert f to a strongly monic polynomial. n := decomposetdg f; x1 := car vars; lvars := for each x in cdr vars collect (x . decomposegensym()); again: if m>10 then << rt := list f; goto ret>>; % construct transformation sigma sigma := for each x in lvars collect x . random 1000; ft := numr subf(f,for each x in sigma collect (caar x . list('plus,cdar x,list('times,x1,cdr x)))); if not domainp lc ft then <<m:=m+1; goto again>>; a0 := lc ft; ft := quotf(ft,a0); rt := decomposesfmnorm(ft,n,sublis(lvars,vars)); if cdr rt then % Transform result back. <<rt := reverse rt; rt := numr subf(car rt,for each x in sigma collect (cdar x . list('difference,caar x,list('times,cdr x,x1)))) . multf(a0,cadr rt) . cddr rt; >> else rt := list f; ret: setkorder kord; rt := for each p in rt collect reorder p; % try further decomposition of central polynomial. return if cdr rt and decomposetdg car rt>1 then append(reverse cdr rt,decomposesfmulti1(car rt,vars)) else reverse rt; end; symbolic procedure decomposelmon f; % Extract the variables of the leading monomial. if domainp f then nil else mvar f . decomposelmon lc f; symbolic procedure decomposenormfac p1; if null dmode!* or not flagp(dmode!*,'field) then multf(numr mkabsfd decomposecont p1,decomposesign p1) else <<while not domainp p1 do p1:=lc p1; p1>>; symbolic procedure decomposecont f; % Calculate the content of f if the domain is a ring. if domainp f then f else gcdf(decomposecont lc f, decomposecont red f); symbolic procedure decomposesign f; % Compute a unit factor c such that the leading coefficient of % f/c is a positive integer. if domainp f then numr quotsq(f ./ 1,mkabsfd f) else decomposesign lc f; symbolic procedure decomposesfmnorm(f,n,vars); % Multivariate case: map strongly monic polynomial to univariate % and lift result. begin scalar x,x1,f0,g,u,abort,h,k,tt,q,v; integer r,s; x1 := car vars; % Step 1. f0 := numr subf(f,for each y in cdr vars collect (y . 0)); u := decomposesfuni f0; % For multivariate we accept degree=1 polynomials as nontrivial % but inhibit recursion. if null cdr u then <<u:=append(u,list !*k2f x1)>>; x := decomposegensym(); g := numr subf(car u,list (x1 . x)); r := ldeg g; h := cadr u; u := cddr u; while u do <<v := car u; u:= cdr u; h := numr subf(h,list(x1 . x)); h := compose(h,v); >>; % Step 2. s := divide(n,r); if not(cdr s=0) then goto fail else s := car s; k := h; tt := compose(decomposedf(g,x),h); % Step 3: Hensel lifting in degree steps. for i:=1:s do if not abort then % Step 4: loop step. <<u := decomposehomog(addf(f,negf compose(g,k)),x1,i); q := quotf(u,tt); if u and null q then abort:=t else<<h:=q; k:=addf(k,h)>> >>; if abort then goto fail; % Step 5: test result and loop for lower part. h := k; if f = compose(g,h) then return list(g,h); fail: % Exit: no decomposition found. return list f; end; symbolic procedure decomposehomog(f,x,d); % F is a polynomial (standard form) in x and some other % variables. Select that part of f, where the coefficients % of x are monomials in total degree d. % Result is the sum (standard form) of these monomials. begin scalar u,v; u := decomposehomog1(f,x,d); for each m in u do v := addf(v,m); return v; end; symbolic procedure decomposehomog1(f,x,d); % Select the monomials. if d<0 or null f then nil else if domainp f then (if d=0 then list f else nil) else begin scalar u1,u2; u1:= decomposehomog1(lc f,x,if mvar f = x then d else d-ldeg f); u2:= decomposehomog1(red f,x,d); return nconc( for each v in u1 collect multf(mvar f .** ldeg f .*1 .+ nil , v), u2); end; symbolic procedure decomposegensym(); compress(append('(!! !D !! !c !! !.), explode2(decomposegensym!*:=decomposegensym!*+1))); endmodule; module interpol; % polynomial interpolation (Aitken & Neville). % Author: Herbert Melenk <melenk@sc.zib-berlin.de>. symbolic procedure interpol(fc,x,pts); % find a polynomial f(x) such that holds: % f(part(pts,i)) = part(fc,i) for all i <= lenth pts. % The Aitken-Neville schema is used; it is stable for % symbolic and numeric values. begin scalar d,q,s,p1,p2,x1,x2,f1,f2,fnew; if not eqcar(fc,'list) or not eqcar(pts,'list) or not(length fc=length pts) then rerror(poly,19,"Illegal parameters for interpol"); s:=for each p in pair(cdr fc,cdr pts) collect simp car p . simp cdr p . simp cdr p; x:= simp x; % outer loop as long as there is more than 1 element. while cdr s do <<q:= nil; % inner loop for all adjacent pairs of polynomials. while cdr s do <<p1:=car s; s:=cdr s; p2:=car s; f1:=car p1; f2:=car p2; x1:=cadr p1; x2:=cddr p2; d:=subtrsq(x1,x2); if null numr d then rerror(poly,20, "Interpolation impossible if two points are equal"); fnew:= quotsq( subtrsq(multsq(subtrsq(x,x2),f1), multsq(subtrsq(x,x1),f2)), d); q:=(fnew.x1.x2).q; >>; s:=reversip q; >>; return prepsq caar s; end; % We can't do following for bootstrapping reasons. % symbolic operator interpol; flag('(interpol),'opfn); endmodule; module subs2q; % Routines for substituting for powers. % Author: Anthony C. Hearn. % Copyright (c) 1991 The RAND Corporation. All rights reserved. fluid '(!*exp !*mcd !*structure !*sub2 alglist!* dmode!* frlis!*); global '(!*resubs powlis!* powlis1!* simpcount!* simplimit!*); Comment If STRUCTURE is ON, then expressions like (a**(b/2))**2 are not simplified, to allow some attempt at a structure theorem use, especially in the integrator; symbolic procedure subs2q u; % Perform power substitutions on u. Check whether substitions % on numerator and denominator change these before doing % quotient (to avoid undoing rationalization of denominator). ((if denr x=1 and denr y=1 and numr x=v and numr y=w then u else quotsq(x,y)) where x=subs2f v, y=subs2f w) where v=numr u, w=denr u; symbolic procedure subs2f u; begin scalar x; if simpcount!*>simplimit!* then <<simpcount!* := 0; rerror(poly,21,"Simplification recursion too deep")>>; simpcount!* := simpcount!*+1; !*sub2 := nil; x := subs2f1 u; if (!*sub2 or powlis1!*) and !*resubs then if numr x=u and denr x=1 then !*sub2 := nil else x := subs2q x; simpcount!* := simpcount!*-1; return x end; symbolic procedure subs2f1 u; if domainp u then !*d2q u else begin scalar kern,v,w,x,y,z; kern := mvar u; z := nil ./ 1; a: if null u or degr(u,kern)=0 then go to a1; y := lt u .+ y; u := red u; go to a; a1: x := powlis!*; a2: if null x then go to b else if caaar y = caar x then <<w := subs2p(caar y,cadar x,cadddr car x); go to e1>> % else if eqcar(kern,'sqrt) and cadr kern = caar x % then <<w := raddsq(subs2p(cadr kern . cdaar y, % cadar x,cadddr car x),2);% go to e1>>; else if eqcar(kern,'expt) and cadr kern = caar x and eqcar(caddr kern,'quotient) and cadr caddr kern = 1 and numberp caddr caddr kern then <<v := divide(cdaar y,caddr caddr kern); % if car v neq 0 then w := mksq(cadr kern,car v) % Use simp/exptsq to make sure I converted in complex mode. if car v neq 0 then w := exptsq(simp cadr kern,car v) else w := 1 ./ 1; if cdr v neq 0 then <<begin scalar alglist!*,dmode!*; % We must do exponent arithmetic in integer % mode. v := cancel(cdr v.caddr caddr kern) end; w := multsq(raddsq(subs2p(cadr kern . car v, cadar x,cadddr car x), cdr v),w)>>; go to e1>>; x := cdr x; go to a2; b: x := powlis1!*; l2: if null x then go to l3 else if w:= mtchp(caar y,caar x,caddar x,caadar x,cdadar x) then go to e1; x := cdr x; go to l2; l3: if eqcar(kern,'expt) and not !*structure then go to l1; z := addsq(multpq(caar y,subs2f1 cdar y),z); c: y := cdr y; if y then go to a1; d: y := subs2f1 u; % mkprod checks structure in "constant" term. if null !*exp then y := mkprod numr y ./ mkprod denr y; return addsq(z,y); e1: z := addsq(multsq(w,subs2f1 cdar y),z); go to c; l1: if cdaar y=1 and not eqcar(cadr kern,'expt) % ONEP then w := mksq(kern,1) else w := simpexpt list(cadr kern, list('times,caddr kern,cdaar y)); z := addsq(multsq(w,subs2f1 cdar y),z); y := cdr y; if y then go to l1 else go to d; end; symbolic procedure subs2p(u,v,w); % U is a power, V an integer, and W an algebraic expression, such % that CAR U**V=W. Value is standard quotient for U with this % substitution. begin if not fixp cdr u or car(v := divide(cdr u,v))=0 then return !*p2q u; w := exptsq(simp w,car v); return if cdr v=0 then w else multpq(car u .** cdr v,w) end; symbolic procedure raddsq(u,n); %U is a standard quotient, N and integer. Value is sq for U**(1/N); simpexpt list(mk!*sq u,list('quotient,1,n)); symbolic procedure mtchp(u,v,w,flg,bool); %U is a standard power, V a power to be matched against. %W is the replacement expression. %FLG is a flag which is T if an exact power match required. %BOOL is a boolean expression to be satisfied for substitution. %Value is the substitution standard quotient if a match found, %NIL otherwise; begin scalar x; x := mtchp1(u,v,flg,bool); a: if null x then return nil else if lispeval subla(car x,bool) then go to b; x := cdr x; go to a; b: v := divide(cdr u,subla(car x,cdr v)); w := exptsq(simp subla(car x,w),car v); if cdr v neq 0 then w := multpq(car u .** cdr v,w); return w end; symbolic procedure mtchp1(u,v,flg,bool); %U is a standard power, V a power to be matched against. %FLG is a flag which is T if an exact power match required. %BOOL is a boolean expression to be satisfied for substitution. %Value is a list of possible free variable pairings which %match conditions; begin scalar x; if u=v then return list nil else if not (x:= mchk!*(car u,car v)) then return nil else if cdr v memq frlis!* % do not match a free power to 1 or a conflicting match. then if cdr u=1 or not(x:= powmtch(cdr v,x,cdr u)) then return nil else return mapcons(x,cdr v . cdr u) else if (flg and not(cdr u=cdr v)) or not numberp cdr v or not numberp cdr u or (if !*mcd then cdr u<cdr v else (cdr u*cdr v)<0 or %implements explicit sign matching; abs cdr u<abs cdr v) then return nil else return x end; symbolic procedure powmtch(u,v,w); % Match a free power u against list of pairings v for value w. % Note from ACH: I have not yet found a case where this process % results in a match, even if a non-NIL value is returned. An % example with this procedure being necessary would be appreciated. if null v then nil else (if null x or cdr x=w then car v . powmtch(u,cdr v,w) else powmtch(u,cdr v,w)) where x=atsoc(u,car v); symbolic procedure mchk!*(u,v); begin scalar x; if x := mchk(u,v) then return x else if !*mcd or not (sfp u and sfp v) then return nil else return mchk(prepf u,prepf v) end; endmodule; module subs3q; % Routines for matching products. % Author: Anthony C. Hearn. % Copyright (c) 1992 RAND. All rights reserved. fluid '(!*mcd !*sub2 subfg!*); global '(!*match !*resubs mchfg!* powlis1!*); symbolic procedure subs3q u; %U is a standard quotient. %Value is a standard quotient with all product substitutions made; begin scalar x; x := mchfg!*; %save value in case we are in inner loop; mchfg!* := nil; u := quotsq(subs3f numr u,subs3f denr u); mchfg!* := x; return u end; symbolic procedure subs3f u; %U is a standard form. %Value is a standard quotient with all product substitutions made; subs3f1(u,!*match,t); symbolic procedure subs3f1(u,l,bool); %U is a standard form. %L is a list of possible matches. %BOOL is a boolean variable which is true if we are at top level. %Value is a standard quotient with all product substitutions made; begin scalar x,z; z := nil ./ 1; a: if null u then return z else if domainp u then return addsq(z,u ./ 1) else if bool and domainp lc u then go to c; x := subs3t(lt u,l); if not bool %not top level; or not mchfg!* then go to b; %no replacement made; mchfg!* := nil; if numr x = u and denr x = 1 then <<x := u ./ 1; go to b>> % also shows no replacement made (sometimes true with non % commuting expressions) else if null !*resubs then go to b else if !*sub2 or powlis1!* then x := subs2q x; %make another pass; x := subs3q x; b: z := addsq(z,x); u := cdr u; go to a; c: x := list lt u ./ 1; go to b end; symbolic procedure subs3t(u,v); % U is a standard term, V a list of matching templates. % Value is a standard quotient for the substituted term. begin scalar bool,w,x,y,z; x := mtchk(car u,if domainp cdr u then sizchk(v,1) else v); if null x then go to a %lpow doesn't match; else if null caar x then go to b; %complete match found; y := subs3f1(cdr u,x,nil); %check tc for match; if mchfg!* then return multpq(car u,y); a: return list u . 1; %no match; b: x := cddar x; %list(<subst value>,<denoms>); z := caadr x; %leading denom; mchfg!* := nil; %initialize for tc check; y := subs3f1(cdr u,!*match,nil); mchfg!* := t; if car z neq caar u then go to e else if z neq car u %powers don't match; then y := multpq(caar u .** (cdar u-cdr z),y); b1: y := multsq(simpcar x,y); x := cdadr x; if null x then return y; z := 1; %unwind remaining denoms; c: if null x then go to d; w:= if atom caar x or sfp caar x then caar x else ((lambda ww; if kernp ww and eqcar(ww := mvar numr ww,car caar x) then ww else revop1 caar x) (simp caar x) where subfg!* = nil); % In the non-commutative case we have to be very careful about % order of terms in a product. Introducing negative powers % solves this problem. if noncomp w or not !*mcd then bool := t; % z := multpf(mksp(w,if null bool then cdar x else -cdar x),z); % original line z := multf(z,!*p2f mksp(w, if null bool then cdar x else -cdar x)); % kernel CAAR X is not unique here. Earlier versions used just % CAAR X, but this leads to sums of terms in the wrong order. % The code here is probably still not correct in all cases, and % may lead to unbounded calculations. Maybe SIMP should be used % instead of REVOP1, with appropriate adjustments in the code % to construct Z. x := cdr x; go to c; d: return if not bool then car y . multf(z,cdr y) else multf(z,car y) . cdr y; e: if simp car z neq simp caar u then errach list('subs3t,u,x,z); %maybe arguments were in different order, otherwise it's fatal; if cdr z neq cdar u then y:= multpq(caar u .** (cdar u-cdr z),y); go to b1 end; symbolic procedure sizchk(u,n); if null u then nil else if length caar u>n then sizchk(cdr u,n) else car u . sizchk(cdr u,n); symbolic procedure mtchk(u,v); %U is a standard power, V a list of matching templates. %If a match is made, value is of the form: %list list(NIL,<boolean form>,<subst value>,<denoms>), %otherwise value is an updated list of templates; begin scalar flg,v1,w,x,y,z; flg := noncomp car u; a0: if null v then return z; v1 := car v; w := car v1; a: if null w then go to d; x := mtchp1(u,car w,caadr v1,cdadr v1); b: if null x then go to c else if car (y := subla(car x,delete(car w,car v1)) . list(subla(car x,cadr v1), subla(car x,caddr v1), subla(car x,car w) . cadddr v1)) then z := y . z else if lispeval subla(car x,cdadr v1) then return list y; x := cdr x; go to b; c: if null flg then <<w := cdr w; go to a>> else if cadddr v1 and nocp w then go to e; d: z :=aconc(z,v1); % Could also be append(z,list v1). e: v := cdr v; go to a0 end; symbolic procedure nocp u; null u or (noncomp caar u and nocp cdr u); endmodule; module subs4q; % Routines for matching quotients. % Author: Anthony C. Hearn. % modification to more general quotient matching: Herbert Melenk % Copyright (c) 1992 RAND. All rights reserved. symbolic procedure subs4q u; % U is a standard quotient, % Value is a standard quotient with all quotient substitutions made. begin scalar x,w,q,d; if null(x:=get('slash,'opmtch)) then return u; w := prepsq u; remprop('slash,'opmtch); % to prevent endless recursion. put('slash!*,'opmtch,x); while w and eqcar(q:=w,'quotient) do <<w:=opmtch ('slash!* . cdr w) or smemq('minus,caddr w) and opmtch{'slash!*,reval{'minus,cadr w}, reval{'minus,caddr w}}; d:=d or w>>; u:= if d then simp!* q else u; put('slash,'opmtch,x); return u; end; endmodule; module horner; % Convert an expression into a nested Horner product. % Author: Herbert Melenk. fluid '(!*exp !*div); symbolic procedure hornersq u; if !*div and null dmode!* and numberp denr u and denr u neq 1 then <<setdmode('rational,t); u:=hornerf quotf(numr u, denr u); setdmode('rational,nil); u ./ 1>> else hornerf numr u . hornerf denr u; symbolic procedure hornerf u; <<u:=expnd u where !*exp=t; hornerf1 u where !*exp=nil>>; symbolic procedure hornerf1 u; begin scalar x,a,b,c; integer n,m; if domainp u then return u; if domainp red u then goto q; % Identify the pattern % x^n*a + x^m*b + c with n>m % and transform it into % x^m(x^(n-m)*a + b) + c % calling hornerf1 again for folding x^m with powers of % x in c. Also a and b are folded recursively. % The term x^n*a may have the form (x^k*f+g)*x^n*h % by recursion; in that case a is (x^k*f+g)*h. if (x:=mvar u) = mvar red u then << n:=ldeg u; a:=hornerf1 lc u; u:=red u; m:=ldeg u; b:=hornerf1 lc u; c:=red u >> else if sfp mvar u and not domainp lc u and (x:=mvar lc u)=mvar red u and (n:=ldeg lc u)>(m:=ldeg red u) then << a:=multf(mvar u,lc lc u); u:=red u; b:=hornerf1 lc u; c:=red u >> else goto q; return hornerf1 addf(multf(exptf(!*k2f x,m), addf(multf(exptf(!*k2f x,n-m),a), b)), c); q: return addf(multf(!*p2f lpow u,hornerf1 lc u),hornerf1 red u); end; put('horner,'polyfn,'hornerf); endmodule; end;