Artifact c08ff05bbc696443f549d3b085e36f0e2cd6e631f5b2cfb4c480f80eafe13e45:
- Executable file
r38/packages/crack/crequsol.red
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 2671) [annotate] [blame] [check-ins using] [more...]
%******************************************************************** module equivalence$ %******************************************************************** % Routines for testing equivalence of solutions % Author: Thomas Wolf % 1996 % % $Id: crequsol.red,v 1.2 1998/04/28 21:32:11 arrigo Exp $ % algebraic procedure extrfun(sol)$ % unpacking the free functions from the list of free functions % together with their dependencies for each f in third sol collect << for each h in rest f do depend first f,h; first f >>$ algebraic procedure equivsol(sol1,sol2,vl)$ % checking equivalence of two solutions of crack, that have been % `completed' with the procedure `completesol' before. % The evaluated functions should have identical names in both % solutions. None of both solutions should contain any unsolved % equations. % vl is a list of all independent variables in both solutions. begin scalar f1,f2,s1,s2,ff2,f,h,s,v,mm_,oldtime; symbolic fluid '(time_); if (first sol1 neq {}) or (first sol2 neq {}) or (length second sol1 neq length second sol2) or (length third sol1 neq length third sol2) then return nil; f1:=extrfun(sol1); f2:=extrfun(sol2); % substituting the names of free functions in sol2 to avoid % name clashes s2:=second sol2; ff2:=for each f in f2 collect << h:=lisp gensym(); s2:=sub(f=h,s2); s:=fargs(f); for each v in s do depend h,v; h >>; % conditions of equivalence of both solutions s1:=for each s in second sol1 collect (lhs s - rhs s); s1:=sub(s2,s1); lisp<<oldtime:=time_;time_:=nil>>; h:=crack(s1,{},f1,vl); lisp(time_:=oldtime); % is there a regular relation beetween the free functions % of sol1 and sol2? if h={} or (length h neq 1) then return nil else h:=first h; if (first h neq {}) or (third h neq {}) then return nil; s2:=second h; h:=length f1; matrix m__(h,h); for f:=1:h do for s:=1:h do m__(f,s):=df(rhs part(s2,f),part(ff2,s)); % cleaning dependencies for each h in ff2 do << s:=fargs(h); for each v in s do nodepend h,v; >>; return if det m__=0 then nil else t end$ algebraic procedure completesol(sol)$ % substitutes in a list of solutions of crack the list of free or yet % unevaluated functions by a list of lists containing each function % and the variables they depend on. This is useful to save solutions % in files. list(first sol, second sol, for each f in third sol collect cons(f,fargs f), if length sol>3 then part(sol,4) else {} )$ endmodule$ end$