Artifact bcefb46f59f9acc4389af5ad22d45c3cbb5a161e1dd73b4dd275436e777ffca7:
- Executable file
r37/doc/manual2/specfn2.tex
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 1591) [annotate] [blame] [check-ins using] [more...]
- Executable file
r38/doc/manual2/specfn2.tex
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 1591) [annotate] [blame] [check-ins using]
\chapter{SPECFN2: Special special functions} \label{SPECFN2} \typeout{{SPECFN2: Package for special special functions}} {\footnotesize \begin{center} Victor S. Adamchik \\ Byelorussian University \\ Minsk, Belorus \\[0.1in] and\\[0.05in] Winfried Neun \\ Konrad--Zuse--Zentrum f\"ur Informationstechnik Berlin \\ Takustra\"se 7 \\ D--14195 Berlin--Dahlem, Germany \\[0.05in] e--mail: neun@zib.de \end{center} } \ttindex{SPECFN2} \index{Generalised Hypergeometric functions} \index{Meijer's G function} The (generalised) hypergeometric functions \begin{displaymath} _pF_q \left( {{a_1, \ldots , a_p} \atop {b_1, \ldots ,b_q}} \Bigg\vert z \right) \end{displaymath} are defined in textbooks on special functions. \section{\REDUCE{} operator HYPERGEOMETRIC} The operator {\tt hypergeometric} expects 3 arguments, namely the list of upper parameters (which may be empty), the list of lower parameters (which may be empty too), and the argument, e.g: \begin{verbatim} hypergeometric ({},{},z); Z E hypergeometric ({1/2,1},{3/2},-x^2); ATAN(X) --------- X \end{verbatim} \section{Enlarging the HYPERGEOMETRIC operator} Since hundreds of particular cases for the generalised hypergeometric functions can be found in the literature, one cannot expect that all cases are known to the {\tt hypergeometric} operator. Nevertheless the set of special cases can be augmented by adding rules to the \REDUCE{} system, {\em e.g.} \begin{verbatim} let {hypergeometric({1/2,1/2},{3/2},-(~x)^2) => asinh(x)/x}; \end{verbatim}