Artifact bbb4889bcbff252cef27c029784bb5657c9f3bc7e35d829c1196b366a8ddc5b2:
- File
r34.1/xmpl/groebner.tst
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 3071) [annotate] [blame] [check-ins using] [more...]
- File
r34/xmpl/groebner.tst
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 3071) [annotate] [blame] [check-ins using]
%Examples of use of Groebner code. % Example 1, Linz 85. groebner({q1, q2**2 + q3**2 + q4**2, q4*q3*q2, q3**2*q2**2 + q4**2*q2**2 + q4**2*q3**2, q6**2 + 1/3*q5**2, q6**3 - q5**2*q6, 2*q2**2*q6 - q3**2*q6 - q4**2*q6 + q3**2*q5 - q4**2*q5, 2*q2**2*q6**2 - q3**2*q6**2 - q4**2*q6**2 - 2*q3**2*q5*q6 + 2*q4**2*q5*q6 - 2/3*q2**2*q5**2 + 1/3*q3**2*q5**2 + 1/3*q4**2*q5**2, - q3**2*q2**2*q6 - q4**2*q2**2*q6 + 2*q4**2*q3**2*q6 - q3**2*q2**2*q5 + q4**2*q2**2*q5, - q3**2*q2**2*q6**2 - q4**2*q2**2*q6**2 + 2*q4**2*q3**2*q6**2 + 2*q3**2*q2**2*q5*q6 - 2*q4**2*q2**2*q5*q6 + 1/3*q3**2*q2**2 *q5**2 + 1/3*q4**2*q2**2*q5**2 - 2/3*q4**2*q3**2*q5**2, - 3*q3**2*q2**4*q5*q6**2 + 3*q4**2*q2**4*q5*q6**2 + 3*q3**4*q2**2*q5*q6**2 - 3*q4**4*q2**2*q5*q6**2 - 3*q4**2*q3**4*q5*q6**2 + 3*q4**4*q3**2*q5*q6**2 + 1/3*q3**2*q2**4*q5**3 - 1/3*q4**2*q2**4*q5**3 - 1/3*q3**4*q2**2*q5**3 + 1/3*q4**4*q2**2*q5**3 + 1/3*q4**2 *q3**4*q5**3 - 1/3*q4**4*q3**2*q5**3}, {q1,q2,q3,q4,q5,q6}); % Example 2. (Little) Trinks problem with 7 polynomials in 6 variables. polys := {45*p + 35*s - 165*b - 36, 35*p + 40*z + 25*t - 27*s, 15*w + 25*p*s + 30*z - 18*t - 165*b**2, - 9*w + 15*p*t + 20*z*s, w*p + 2*z*t - 11*b**3, 99*w - 11*s*b + 3*b**2, b**2 + 33/50*b + 2673/10000}; vars := {w,p,z,t,s,b}; groebner(polys,vars); groesolve(polys,vars); % Example 3. Hairer, Runge-Kutta 1, 6 polynomials 8 variables. groebnerf({c2 - a21, c3 - a31 - a32, b1 + b2 + b3 - 1, b2*c2 + b3*c3 - 1/2, b2*c2**2 + b3*c3**2 - 1/3, b3*a32*c2 - 1/6}, {c2,c3,b3,b2,b1,a21,a32,a31}); % Example 4. torder gradlex; g4 := groebner({b + e + f - 1, c + d + 2*e - 3, b + d + 2*f - 1, a - b - c - d - e - f, d*e*a**2 - 1569/31250*b*c**3, c*f - 587/15625*b*d}); hilbertpolynomial(g4,gvarslast); % gunivar(e,8,g4,gvarslast); glexconvert(g4,gvarslast,newvars={e},maxdeg=8); groebnerf({b + e + f - 1, c + d + 2*e - 3, b + d + 2*f - 1, a - b - c - d - e - f, d*e*a**2 - 1569/31250*b*c**3, c*f - 587/15625*b*d}); % Example 5. groesolve({u0**2 - u0 + 2*u1**2 + 2*u2**2 + 2*u3**2, 2*u0*u1 + 2*u1*u2 + 2*u2*u3 - u1, 2*u0*u2 + u1**2 + 2*u1*u3 - u2, u0 + 2*u1 + 2*u2 + 2*u3 - 1}, {u0,u2,u3,u1}); % Example 6. (Big) Trinks problem with 6 polynomials in 6 variables. torder lex; groebner({45*p + 35*s - 165*b - 36, 35*p + 40*z + 25*t - 27*s, 15*w + 25*p*s + 30*z - 18*t - 165*b**2, -9*w + 15*p*t + 20*z*s, w*p + 2*z*t - 11*b**3, 99*w - 11*b*s + 3*b**2}, {w,p,z,t,s,b}); hilbertpolynomial(ws,gvarslast); end;