Artifact ba5c595db860b904e4e8f5f92b6ca85495edc72e5bfbb02168b1341462d01e9c:
- File
r34.1/lib/laplace.tst
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 10985) [annotate] [blame] [check-ins using] [more...]
- File
r34/lib/laplace.tst
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 10985) [annotate] [blame] [check-ins using]
- File
r35/lib/laplace.tst
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 10985) [annotate] [blame] [check-ins using]
% Title: Examples of Laplace Transforms. % Author: L. Kazasov. % Date: 24 October 1988. order p; % Elementary functions with argument k*x, where x is object var. laplace(1,x,p); laplace(c,x,p); laplace(sin(k*x),x,p); laplace(sin(x/a),x,p); laplace(sin(17*x),x,p); laplace(sinh x,x,p); laplace(cosh(k*x),x,p); laplace(x,x,p); laplace(x**3,x,p); off mcd; laplace(e**(c*x) + a**x, x, s); laplace(e**x - e**(a*x) + x**2, x, p); laplace(one(k*t) + sin(a*t) - cos(b*t) - e**t, t, p); laplace(sqrt(x),x,p); laplace(x**(1/2),x,p); on mcd; laplace(x**(-1/2),x,p); laplace(x**(5/2),x,p); laplace(-1/4*x**2*c*sqrt(x), x, p); % Elementary functions with argument k*x - tau, % where k>0, tau>=0, x is object var. laplace(cos(x-a),x,p); laplace(one(k*x-tau),x,p); laplace(sinh(k*x-tau),x,p); laplace(sinh(k*x),x,p); laplace((a*x-b)**c,x,p); % But ... off mcd; laplace((a*x-b)**2,x,p); on mcd; laplace(sin(2*x-3),x,p); on lmon; laplace(sin(2*x-3),x,p); off lmon; off mcd; laplace(cosh(t-a) - sin(3*t-5), t, p); on mcd; % More complicated examples - multiplication of functions. % We use here on lmon - a new switch that forces all % trigonometrical functions which depend on object var % to be represented as exponents. laplace(x*e**(a*x)*cos(k*x), x, p); laplace(x**(1/2)*e**(a*x), x, p); laplace(-1/4*e**(a*x)*(x-k)**(-1/2), x, p); laplace(x**(5/2)*e**(a*x), x, p); laplace((a*x-b)**c*e**(k*x)*const/2, x, p); off mcd; laplace(x*e**(a*x)*sin(7*x)/c*3, x, p); on mcd; laplace(x*e**(a*x)*sin(k*x-tau), x, p); % The next is unknown if lmon is off. laplace(sin(k*x)*cosh(k*x), x, p); laplace(x**(1/2)*sin(k*x), x, p); on lmon; % But now is OK. laplace(x**(1/2)*sin(a*x)*cos(a*b), x, p); laplace(sin(x)*cosh(x), x, p); laplace(sin(k*x)*cosh(k*x), x, p); off exp; laplace(sin(k*x-t)*cosh(k*x-t), x, p); on exp; laplace(cos(x)**2,x,p);laplace(c*cos(k*x)**2,x,p); laplace(c*cos(2/3*x)**2, x, p); laplace(5*sinh(x)*e**(a*x)*x**3, x, p); off exp; laplace(sin(2*x-3)*cosh(7*x-5), x, p); on exp; laplace(sin(a*x-b)*cosh(c*x-d), x, p); % To solve this problem we must tell the program which one-function % is rightmost shifted. However, in REDUCE 3.4, this rule is still % not sufficient. for all x let one(x-b/a)*one(x-d/c) = one(x-b/a); laplace(sin(a*x-b)*cosh(c*x-d), x, p); for all x clear one(x-b/a)*one(x-d/c) ; off lmon; % Floating point arithmetic. % laplace(3.5/c*sin(2.3*x-4.11)*e**(1.5*x), x, p); on rounded; laplace(3.5/c*sin(2.3*x-4.11)*e**(1.5*x), x, p); laplace(x**2.156,x,p); laplace(x**(-0.5),x,p); off rounded; laplace(x**(-0.5),x,p); on rounded; laplace(x*e**(2.35*x)*cos(7.42*x), x, p); laplace(x*e**(2.35*x)*cos(7.42*x-74.2), x, p); % Higher precision works, but uses more memory. % precision 20; laplace(x**2.156,x,p); % laplace(x*e**(2.35*x)*cos(7.42*x-74.2), x, p); off rounded; % Integral from 0 to x, where x is object var. % Syntax is intl(<expr>,<var>,0,<obj.var>). laplace(c1/c2*intl(2*y**2,y,0,x), x,p); off mcd; laplace(intl(e**(2*y)*y**2+sqrt(y),y,0,x),x,p); on mcd; laplace(-2/3*intl(1/2*y*e**(a*y)*sin(k*y),y,0,x), x, p); % Use of delta function and derivatives. laplace(-1/2*delta(x), x, p); laplace(delta(x-tau), x, p); laplace(c*cos(k*x)*delta(x),x,p); laplace(e**(a*x)*delta(x), x, p); laplace(c*x**2*delta(x), x, p); laplace(-1/4*x**2*delta(x-pi), x, p); laplace(cos(2*x-3)*delta(x-pi),x,p); laplace(e**(-b*x)*delta(x-tau), x, p); on lmon; laplace(cos(2*x)*delta(x),x,p); laplace(c*x**2*delta(x), x, p); laplace(c*x**2*delta(x-pi), x, p); laplace(cos(a*x-b)*delta(x-pi),x,p); laplace(e**(-b*x)*delta(x-tau), x, p); off lmon; laplace(2/3*df(delta x,x),x,p); off exp; laplace(e**(a*x)*df(delta x,x,5), x, p); on exp; laplace(df(delta(x-a),x), x, p); laplace(e**(k*x)*df(delta(x),x), x, p); laplace(e**(k*x)*c*df(delta(x-tau),x,2), x, p); on lmon;laplace(e**(k*x)*sin(a*x)*df(delta(x-t),x,2),x,p);off lmon; % But if tau is positive, Laplace transform is not defined. laplace(e**(a*x)*delta(x+tau), x, p); laplace(2*c*df(delta(x+tau),x), x, p); laplace(e**(k*x)*df(delta(x+tau),x,3), x, p); % Adding new let rules for Laplace operator. Note the syntax. for all x let laplace(log(x),x) = -log(gam*il!&)/il!&; laplace(-log(x)*a/4, x, p); laplace(-log(x),x,p); laplace(a*log(x)*e**(k*x), x, p); for all x clear laplace(log(x),x); operator f; for all x let laplace(df(f(x),x),x) = il!&*laplace(f(x),x) - sub(x=0,f(x)); for all x,n such that numberp n and fixp n let laplace(df(f(x),x,n),x) = il!&**n*laplace(f(x),x) - for i:=n-1 step -1 until 0 sum sub(x=0, df(f(x),x,n-1-i)) * il!&**i ; for all x let laplace(f(x),x) = f(il!&); laplace(1/2*a*df(-2/3*f(x)*c,x), x,p); laplace(1/2*a*df(-2/3*f(x)*c,x,4), x,p); laplace(1/2*a*e**(k*x)*df(-2/3*f(x)*c,x,2), x,p); clear f; % Or if the boundary conditions are known and assume that % f(i,0)=sub(x=0,df(f(x),x,i)) the above may be overwritten as: operator f; for all x let laplace(df(f(x),x),x) = il!&*laplace(f(x),x) - f(0,0); for all x,n such that numberp n and fixp n let laplace(df(f(x),x,n),x) = il!&**n*laplace(f(x),x) - for i:=n-1 step -1 until 0 sum il!&**i * f(n-1-i,0); for all x let laplace(f(x),x) = f(il!&); let f(0,0)=0, f(1,0)=1, f(2,0)=2, f(3,0)=3; laplace(1/2*a*df(-2/3*f(x)*c,x), x,p); laplace(1/2*a*df(-2/3*f(x)*c,x,4), x,p); clear f(0,0), f(1,0), f(2,0), f(3,0); clear f; % Very complicated examples. on lmon; laplace(sin(a*x-b)**2, x, p); off mcd; laplace(x**3*(sin x)**4*e**(5*k*x)*c/2, x,p); a:=(sin x)**4*e**(5*k*x)*c/2; laplace(x**3*a,x,p); clear a; on mcd; % And so on, but is very time consuming. % laplace(e**(k*x)*x**2*sin(a*x-b)**2, x, p); % for all x let one(a*x-b)*one(c*x-d) = one(c*x-d); % laplace(x*e**(-2*x)*cos(a*x-b)*sinh(c*x-d), x, p); % for all x clear one(a*x-b)*one(c*x-d) ; % laplace(x*e**(c*x)*sin(k*x)**3*cosh(x)**2*cos(a*x), x, p); off lmon; % Error messages. laplace(sin(-x),x,p); on lmon; laplace(sin(-a*x), x, p); off lmon; laplace(e**(k*x**2), x, p); laplace(sin(-a*x+b)*cos(c*x+d), x, p); laplace(x**(-5/2),x,p); % With int arg, can't be shifted. laplace(intl(y*e**(a*y)*sin(k*y-tau),y,0,x), x, p); laplace(cosh(x**2), x, p); laplace(3*x/(x**2-5*x+6),x,p); laplace(1/sin(x),x,p); % But ... laplace(x/sin(-3*a**2),x,p); % Severe errors. % laplace(sin x,x,cos y); % laplace(sin x,x,y+1); % laplace(sin(x+1),x+1,p); Comment Examples of Inverse Laplace transformations; symbolic(ordl!* := nil); % To nullify previous order declarations. order t; % Elementary ratio of polynomials. invlap(1/p, p, t); invlap(1/p**3, p, t); invlap(1/(p-a), p, t); invlap(1/(2*p-a),p,t); invlap(1/(p/2-a),p,t); invlap(e**(-k*p)/(p-a), p, t); invlap(b**(-k*p)/(p-a), p, t); invlap(1/(p-a)**3, p, t); invlap(1/(c*p-a)**3, p, t); invlap(1/(p/c-a)**3, p, t); invlap((c*p-a)**(-1)/(c*p-a)**2, p, t); invlap(c/((p/c-a)**2*(p-a*c)), p, t); invlap(1/(p*(p-a)), p, t); invlap(c/((p-a)*(p-b)), p, t); invlap(p/((p-a)*(p-b)), p, t); off mcd; invlap((p+d)/(p*(p-a)), p, t); invlap((p+d)/((p-a)*(p-b)), p, t); invlap(1/(e**(k*p)*p*(p+1)), p, t); on mcd; off exp; invlap(c/(p*(p+a)**2), p, t); on exp; invlap(1, p, t); invlap(c1*p/c2, p, t); invlap(p/(p-a), p, t); invlap(c*p**2, p, t); invlap(p**2*e**(-a*p)*c, p, t); off mcd;invlap(e**(-a*p)*(1/p**2-p/(p-1))+c/p, p, t);on mcd; invlap(a*p**2-2*p+1, p, x); % P to non-integer power in denominator - i.e. gamma-function case. invlap(1/sqrt(p), p, t); invlap(1/sqrt(p-a), p, t); invlap(c/(p*sqrt(p)), p, t); invlap(c*sqrt(p)/p**2, p, t); invlap((p-a)**(-3/2), p, t); invlap(sqrt(p-a)*c/(p-a)**2, p, t); invlap(1/((p-a)*b*sqrt(p-a)), p, t); invlap((p/(c1-3)-a)**(-3/2), p, t); invlap(1/((p/(c1-3)-a)*b*sqrt(p/(c1-3)-a)), p, t); invlap((p*2-a)**(-3/2), p, t); invlap(sqrt(2*p-a)*c/(p*2-a)**2, p, t); invlap(c/p**(7/2), p, t); invlap(p**(-7/3), p, t); invlap(gamma(b)/p**b,p,t); invlap(c*gamma(b)*(p-a)**(-b),p,t); invlap(e**(-k*p)/sqrt(p-a), p, t); % Images that give elementary object functions. % Use of new switches lmon, lhyp. invlap(k/(p**2+k**2), p, t); % This is made more readable by : on ltrig; invlap(k/(p**2+k**2), p, t); invlap(p/(p**2+1), p, t); invlap((p**2-a**2)/(p**2+a**2)**2, p, t); invlap(p/(p**2+a**2)**2, p, t); invlap((p-a)/((p-a)**2+b**2), p, t); off ltrig; on lhyp; invlap(s/(s**2-k**2), s, t); invlap(e**(-tau/k*p)*p/(p**2-k**2), p, t); off lhyp; % But it is not always possible to convert expt. functions, e.g.: on lhyp; invlap(k/((p-a)**2-k**2), p, t); off lhyp; on ltrig; invlap(e**(-tau/k*p)*k/(p**2+k**2), p, t); off ltrig; % In such situations use the default switches: invlap(k/((p-a)**2-k**2), p, t); % i.e. e**(a*t)*cosh(k*t). invlap(e**(-tau/k*p)*k/(p**2+k**2), p, t); % i.e. sin(k*t-tau). % More complicated examples. off exp,mcd; invlap((p+d)/(p**2*(p-a)), p, t); invlap(e**(-tau/k*p)*c/(p*(p-a)**2), p, t); invlap(1/((p-a)*(p-b)*(p-c)), p, t); invlap((p**2+g*p+d)/(p*(p-a)**2), p, t); on exp,mcd; invlap(k*c**(-b*p)/((p-a)**2+k**2), p, t); on ltrig; invlap(c/(p**2*(p**2+a**2)), p, t); invlap(1/(p**2-p+1), p, t); invlap(1/(p**2-p+1)**2, p, t); invlap(2*a**2/(p*(p**2+4*a**2)), p, t); % This is (sin(a*t))**2 and you can get this by using the let rules : for all x let sin(2*x)=2*sin x*cos x, cos(2*x)=(cos x)**2-(sin x)**2, (cos x)**2 =1-(sin x)**2; invlap(2*a**2/(p*(p**2+4*a**2)), p, t); for all x clear sin(2*x),cos(2*x),cos(x)**2; off ltrig; on lhyp;invlap((p**2-2*a**2)/(p*(p**2-4*a**2)),p,t); off lhyp; % Analogously, the above is (cosh(a*t))**2. % Floating arithmetic. invlap(2.55/((0.5*p-2.0)*(p-3.3333)), p, t); on rounded; invlap(2.55/((0.5*p-2.0)*(p-3.3333)), p, t); invlap(1.5/sqrt(p-0.5), p, t); invlap(2.75*p**2-0.5*p+e**(-0.9*p)/p, p, t); invlap(1/(2.0*p-3.0)**3, p, t); invlap(1/(2.0*p-3.0)**(3/2), p, t); invlap(1/(p**2-5.0*p+6), p, t); off rounded; % Adding new let rules for the invlap operator. note the syntax: for all x let invlap(log(gam*x)/x,x) = -log(lp!&); invlap(-1/2*log(gam*p)/p, p, t); invlap(-e**(-a*p)*log(gam*p)/(c*p), p, t); for all x clear invlap(1/x*log(gam*x),x); % Very complicated examples and use of factorizer. off exp,mcd; invlap(c**(-k*p)*(p**2+g*p+d)/(p**2*(p-a)**3), p, t); on exp,mcd; invlap(1/(2*p**3-5*p**2+4*p-1), p, t); on ltrig,lhyp; invlap(1/(p**4-a**4), p, t); invlap(1/((b-3)*p**4-a**4*(2+b-5)), p, t); off ltrig,lhyp; % The next three examples are the same: invlap(c/(p**3/8-9*p**2/4+27/2*p-27)**2,p,t);invlap(c/(p/2-3)**6,p,t); off exp; a:=(p/2-3)**6; on exp; invlap(c/a, p, t); clear a; % The following two examples are the same : invlap(c/(p**4+2*p**2+1)**2, p, t); invlap(c/((p-i)**4*(p+i)**4),p,t); % The following three examples are the same : invlap(e**(-k*p)/(2*p-3)**6, p, t); invlap(e**(-k*p)/(4*p**2-12*p+9)**3, p, t); invlap(e**(-k*p)/(8*p**3-36*p**2+54*p-27)**2, p, t); % Error messages. invlap(e**(a*p)/p, p, t); invlap(c*p*sqrt(p), p, t); invlap(sin(p), p, t); invlap(1/(a*p**3+b*p**2+c*p+d),p,t); invlap(1/(p**2-p*sin(p)+a**2),p,t); on rounded; invlap(1/(p**3-1), p, t); off rounded; % Severe errors: %invlap(1/(p**2+1), p+1, sin(t) ); %invlap(p/(p+1)**2, sin(p), t); end;