Artifact b92c8a31422070721c3d7decbe6faa61f34cb194dd4141d658eb13b6e891d8b6:
- File
r34.3/src/arnum.red
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 28821) [annotate] [blame] [check-ins using] [more...]
- File
r35/src/arnum.red
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 28821) [annotate] [blame] [check-ins using]
module arnum; % Support for algebraic rationals. % Author: Eberhard Schruefer. create!-package('(arnum arinv),'(contrib arnum)); global '(domainlist!* arbase!* arvars!* repowl!* curdefpol!* !*acounter!* !*extvar!* reexpressl!*); !*acounter!* := 0; %counter for number of extensions; !*extvar!* := 'a; %default print character for primitive element; fluid '(!*arnum dmode!* !*exp !*chk!-reducibility !*reexpress !*arinv !*arquot !*arq alglist!*); global '(timer timef); switch arnum,chk!-reducibility; timer:=timef:=0; domainlist!*:=union('(!:ar!:),domainlist!*); % Definition of DEFPOLY changed by F. Kako. symbolic procedure defpoly u; begin if null(dmode!* eq '!:ar!:) then on 'arnum; for each j in u do (if eqexpr j then if cadr j=0 then defpoly1 caddr j else if caddr j=0 then defpoly1 cadr j else rerror(arnum,1,list(cadr j,"=",caddr j, " is not a proper defining polynomial")) else defpoly1 j) end; symbolic procedure defpoly1 u; begin scalar x,alglist!*; x := aeval u; if x = 0 then mkextension u else mkextension x end; rlistat '(defpoly); symbolic procedure mkextension u; if null curdefpol!* then initalgnum u else begin scalar !*exp; !*exp := t; primitive!_elem !*a2f u end; symbolic procedure initalgnum u; begin scalar dmode!*,alglist!*,!*exp,x; !*exp := t; arbase!* := nil; u := numr simp0 u; if x := not!_in!_extension u then u := x else return; if lc u neq 1 then u := monicize u; % rederr("defining polynomial must be monic"); curdefpol!* := u; for j:=0:(ldeg u-1) do arbase!* := (if j=0 then 1 else mksp(mvar u,j)) . arbase!*; arvars!* := mvar u . arvars!*; mk!-algebraic!-number!-vars list mvar u; repowl!* := lpow u . negf red u end; symbolic procedure put!-current!-representation(u,v); put(u,'currep,v); symbolic procedure get!-current!-representation u; get(u,'currep); symbolic procedure mkdar u; %puts any algebraic number domain element into its tagged form. %updated representations (through field extension) are accessed here; ((if x then x else '!:ar!: . !*k2f u) ./ 1) where x = get!-current!-representation u; symbolic procedure release u; %Undeclares elements of list u to be algebraic numbers; for each j in u do if atom j then remprop(j,'idvalfn) else clear1 {!*a2k j}; symbolic procedure mk!-algebraic!-number!-vars u; %Declares elements of list u to be algebraic numbers; for each j in u do if atom j then put(j,'idvalfn,'mkdar) else setk(!*a2k j,mk!*sq mkdar j); symbolic procedure uncurrep u; for each j in u do remprop(j,'currep); symbolic procedure update!-extension u; %Updates representation of elements in list u; for each j in u do ((x and put(j,'currep,numr simp prepf cdr x)) where x = get(j,'currep)); symbolic procedure express!-in!-arvars u; %u is an untagged rational number. Result is equivalent algebraic %number expressed in input variables. rerror(arnum,2,"Switch reexpress not yet implemented"); % begin scalar x; % for each j in reexpressl!* do % x := extmult(extadd(...,j),x); % return solve!-for!-arvars x % end; symbolic procedure mkreexpressl; %Sets up the homogenous part of the system to be solved for %expressing a primitive element expression in terms of the %input variables. reexpressl!* := nil; % begin scalar x; % put('reexpress,'simpfg,'((t (mkreexpressl)) (nil (setq reexpressl!* nil)))); %*** tables for algebraic rationals ***; flag('(!:ar!:),'field); put('arnum,'tag,'!:ar!:); put('!:ar!:,'dname,'arnum); put('!:ar!:,'i2d,'!*i2ar); %put('!:ar!:,'!:rn!:,'ar2rn); put('!:ar!:,'!:rd!:,'arconv); put('!:ar!;,'!:cr!:,'arconv); put('!:ar!:,'!:mod!:,'arconv); put('!:ar!:,'minusp,'arminusp!:); put('!:ar!:,'zerop,'arzerop!:); put('!:ar!:,'onep,'aronep!:); put('!:ar!:,'plus,'arplus!:); put('!:ar!:,'difference,'ardifference!:); put('!:ar!:,'times,'artimes!:); put('!:ar!:,'quotient,'arquotient!:); put('!:ar!:,'factorfn,'arfactor!:); put('!:ar!:,'rationalizefn,'arrationalize!:); put('!:ar!:,'prepfn,'arprep!:); put('!:ar!:,'intequivfn,'arintequiv!:); put('!:ar!:,'prifn,'arprn!:); put('!:rn!:,'!:ar!:,'rn2ar); flag('(!:ar!:),'ratmode); symbolic procedure rn2ar u; '!:ar!: . if cddr u=1 then cadr u else u; symbolic procedure ar2rn u; if cadr u eq '!:rn!: then cdr u else if numberp cdr u then '!:rn!: . (cdr u . 1) else rerror(arnum,3,list "Conversion to rational not possible"); symbolic procedure !*i2ar u; '!:ar!: . u; symbolic procedure arconv u; rerror(arnum,4,list("Conversion between current extension and", get(car u,'dname),"not possible")); symbolic procedure arminusp!: u; minusf cdr u; symbolic procedure arzerop!: u; null cdr u; symbolic procedure aronep!: u; cdr u=1; symbolic procedure arintequiv!: u; if numberp cdr u then cdr u else if (cadr u eq '!:rn!:) and (cdddr u=1) then caddr u else nil; smacro procedure mkar u; '!:ar!: . u; symbolic procedure arplus!:(u,v); begin scalar dmode!*,!*exp; !*exp := t; return mkar addf(cdr u,cdr v) end; symbolic procedure ardifference!:(u,v); begin scalar dmode!*,!*exp; !*exp := t; return mkar addf(cdr u,negf cdr v) end; symbolic procedure artimes!:(u,v); begin scalar dmode!*,!*exp; !*exp := t; return mkar reducepowers multf(cdr u,cdr v) end; symbolic procedure arquotient!:(u,v); begin scalar r,s,y,z,dmode!*,!*exp; !*exp := t; if domainp cdr v then return mkar multd(<<dmode!* := '!:rn!:; s := !:recip cdr v; dmode!* := nil; s>>,cdr u); if !*arinv then return mkar reducepowers multf(cdr u,arinv cdr v); if !*arquot then return mkar arquot(cdr v,cdr u); if !*arq then return mkar reducepowers multf(u,arquot1 v); r := ilnrsolve(mkqmatr cdr v,mkqcol cdr u); z := arbase!*; dmode!* := '!:rn!:; for each j in r do s := addf(multf(int!-equiv!-chk car j, <<y := if atom car z then 1 else !*p2f car z; z := cdr z; y>>),s); return mkar s end; symbolic procedure arfactor!: v; if domainp v then list v else if null curdefpol!* then factorf v else begin scalar w,x,y,z,aftrs,ifctr,ftrs,mva,mvu, dmode!*,!*exp; timer:=timef:=0; !*exp := t; mva := mvar curdefpol!*; mvu := mvar v; ifctr := factorft numr(v := fd2q v); dmode!* := '!:ar!:; w := if denr v neq 1 then mkrn(car ifctr,denr v) else car ifctr; for each f in cdr ifctr do begin scalar l; y := numr subf1(car f,nil); if domainp y then <<w := multd(y,w); return>>; y := sqfrnorm y; dmode!* := nil; ftrs := factorft car y; dmode!* := '!:ar!:; if cadr y neq 0 then l := list(mvu . prepf addf(!*k2f mvu, negf multd(cadr y,!*k2f mva))); y := cddr y; for each j in cdr ftrs do <<x := gcdf!*(car j,y); y := quotf!*(y,x); z := if l then numr subf1(x,l) else x; x := lnc ckrn z; z := quotf(z,x); w := multf(w,exptf(x,cdr f)); aftrs := (z . cdr f) . aftrs>> end; %print timer; print timef; return w . sort!-factors aftrs end; symbolic procedure afactorize u; begin scalar ftrs,x,!*exp; integer n; !*exp := t; if cdr u then <<off 'arnum; defpoly cdr u>>; x := arfactor!: !*a2f car u; ftrs := (0 . mk!*sq(car x ./ 1)) . nil; for each j in cdr x do for k := 1:cdr j do ftrs := ((n := n+1) . mk!*sq(car j ./ 1)) . ftrs; return multiple!-result(ftrs,nil) end; put('algeb!_factorize,'psopfn,'afactorize); symbolic procedure arprep!: u; %u; prepf if !*reexpress then express!-in!-arvars cdr u else cdr u; %symbolic procedure simpar u; %('!:ar!: . !*a2f car u) ./ 1; %put('!:ar!:,'simpfn,'simpar); symbolic procedure arprn!: v; ( if atom u or (car u memq '(times expt)) then maprin u else <<prin2!* "("; maprin u; prin2!* ")" >>) where u = prepsq!*(cdr v ./ 1); %*** utility functions ***; symbolic procedure monicize u; %makes standard form u monic by the appropriate variable subst.; begin scalar a,mvu,x; integer n; x := lc u; mvu := mvar u; n := ldeg u; !*acounter!* := !*acounter!* + 1; a := intern compress append(explode !*extvar!*, explode !*acounter!*); u := multsq(subf(u,list(mvu . list('quotient,a,x))), x**(n-1) ./ 1); mk!-algebraic!-number!-vars list mvu; put!-current!-representation(mvu, mkar(a to 1 .* ('!:rn!: . 1 . x) .+ nil)); terpri(); prin2 "defining polynomial has been monicized"; terpri(); maprin prepsq u; terpri!* t; return !*q2f u end; symbolic procedure polynorm u; begin scalar dmode!*,x,y; integer n; n := ldeg curdefpol!*; x := fd2q u; y := resultantft(curdefpol!*,numr x,mvar curdefpol!*); dmode!* := '!:ar!:; return if denr x = 1 then y else !*q2f multsq(y ./ 1,1 ./ (denr x)**n) end; symbolic procedure resultantft(u,v,w); resultant(u,v,w); symbolic procedure factorft u; begin scalar dmode!*; return fctrf u end; symbolic procedure fd2q u; %converts a s.f. over ar to a s.q. over the integers; if atom u then u ./ 1 else if car u eq '!:ar!: then fd2q cdr u else if car u eq '!:rn!: then cdr u else addsq(multsq(!*p2q lpow u,fd2q lc u),fd2q red u); symbolic procedure sqfrnorm u; begin scalar l,norm,y; integer s; y := u; if algebnp u then go to b; a: s := s-1; l := list(mvar u . prepf addf(!*k2f mvar u,multd(s,!*k2f mvar curdefpol!*))); y := numr subf1(u,l); if null algebnp y then go to a; b: norm := polynorm y; if not ar!-sqfrp norm then go to a; return norm . (s . y) end; symbolic procedure algebnp u; if atom u then nil else if car u eq '!:ar!: then t else if domainp u then nil else algebnp lc u or algebnp red u; symbolic procedure ar!-sqfrp u; % This is same as sqfrp in gint module. domainp gcdf!*(u,diff(u,mvar u)); symbolic procedure primitive!_elem u; begin scalar a,x,y,z,newu,newdefpoly,olddefpoly; if x := not!_in!_extension u then u := x else return; !*acounter!* := !*acounter!* + 1; a := intern compress append(explode !*extvar!*, explode !*acounter!*); x := sqfrnorm u; newdefpoly := !*q2f subf(car x,list(mvar car x . a)); olddefpoly := curdefpol!*; newu := !*q2f subf(cddr x,list(mvar car x . a)); rmsubs(); release arvars!*; begin scalar !*chk!-reducibility; initalgnum prepf newdefpoly end; y := gcdf!*(numr simp prepf newu,olddefpoly); arvars!* := mvar car x . arvars!*; mk!-algebraic!-number!-vars arvars!*; put!-current!-representation(mvar olddefpoly, z := quotf!*(negf red y,lc y)); put!-current!-representation(mvar car x, addf(mkar !*k2f a, multf(!*n2f cadr x,z))); rmsubs(); update!-extension arvars!*; terpri!* t; prin2!* "*** Defining polynomial for primitive element:"; terpri!* t; maprin prepf curdefpol!*; terpri!* t end; symbolic procedure not!_in!_extension u; %We still need a criterion which branch to choose; %Isolating intervals would do; begin scalar ndp,x; integer cld; if null !*chk!-reducibility then return u; cld := ldeg u; ndp := u; x := if curdefpol!* then arfactor!: u else factorf u; for each j in cdr x do if ldeg car j < cld then <<ndp := car j; cld := ldeg ndp>>; if cld=1 then <<mk!-algebraic!-number!-vars list mvar u; arvars!* := mvar u . arvars!*; put!-current!-representation(mvar u, quotf!*(negf red ndp,lc ndp)); return nil>> else return ndp end; symbolic procedure split!_field1(u,v); % Determines the minimal splitting field for u. begin scalar a,ftrs,mvu,q,x,y,z,roots,bpoly,minpoly,newminpoly, polys,newfactors,dmode!*,!*exp,!*chk!-reducibility; integer indx,lcu,k,n,new!_s; off 'arnum; %crude way to clear previous extensions; !*exp := t; u := !*q2f simp!* u; mvu := mvar u; lcu := lc u; if lcu neq 1 then u := !*q2f multsq(subf(u,list(mvu . list('quotient,mvu,lcu))), lcu**(ldeg u - 1) ./ 1); indx := 1; polys := (1 . u) . polys; !*acounter!* := !*acounter!* + 1; a := intern compress append(explode !*extvar!*, explode !*acounter!*); minpoly := newminpoly := numr subf(u,list(mvu . a)); dmode!* := '!:ar!:; mkextension prepf minpoly; roots := mkar !*k2f a . roots; b: polys := for each j in polys collect if indx=car j then car j . quotf!*(cdr j, addf(!*k2f mvu,negf car roots)) else j; k := 1; indx := 0; for each j in polys do begin scalar l; x := sqfrnorm cdr j; if cadr x neq 0 then l := list(mvu . prepf addf(!*k2f mvu, negf multd(cadr x,!*k2f a))); z := cddr x; dmode!* := nil; ftrs := cdr factorf car x; dmode!* := '!:ar!:; for each qq in ftrs do <<y := gcdf!*(z,q:=car qq); if ldeg q > ldeg newminpoly then <<newminpoly := q; new!_s := cadr x; indx := k; bpoly := y>>; z := quotf!*(z,y); if l then y := numr subf(y,l); if ldeg y=1 then roots := quotf(negf red y,lc y) . roots else <<newfactors:=(k . y) . newfactors; k:=k+1>>>> end; if null newfactors then <<terpri(); prin2t "*** Splitting field is generated by:"; terpri(); maprin prepf newminpoly; terpri!* t; n := length roots; return multiple!-result( for each j in roots collect (n := n-1) . mk!*sq(cancel(j ./ lcu)),v)>>; !*acounter!* := !*acounter!* + 1; a := intern compress append(explode !*extvar!*, explode !*acounter!*); newminpoly := numr subf(newminpoly,list(mvu . a)); bpoly := numr subf(bpoly,list(mvu . a)); rmsubs(); release arvars!*; initalgnum prepf newminpoly; x := gcdf!*(minpoly,numr simp prepf bpoly); mk!-algebraic!-number!-vars arvars!*; put!-current!-representation(mvar minpoly, z := quotf!*(negf red x,lc x)); rmsubs(); roots := addf(mkar !*k2f a,multf(!*n2f new!_s,z)) . for each j in roots collect numr subf(cdr j,nil); polys := for each j in newfactors collect car j . numr simp prepf cdr j; newfactors := nil; minpoly := newminpoly; go to b end; symbolic procedure split!-field!-eval u; begin scalar x; if length u > 2 then rerror(arnum,5, "Split!_field called with wrong number of arguments"); x := split!_field1(car u,if cdr u then cadr u else nil); dmode!* := '!:ar!:; %The above is necessary for working with the results. return x end; put('split!_field,'psopfn,'split!-field!-eval); symbolic procedure arrationalize!: u; %We should actually factorize the denominator first to %make sure that the result is in lowest terms. ???? begin scalar x,y,z,dmode!*; if domainp denr u then return quotf(numr u,denr u) ./ 1; if null algebnp denr u then return u; x := polynorm numr fd2q denr u; y := multsq(fd2q multf(numr u,quotf!*(x,denr u)),1 ./ x); dmode!* := '!:ar!:; x := numr subf(denr y,nil); y := numr subf(numr y,nil); z := lnc x; return quotf(y,z) ./ quotf(x,z) end; %put('rationalize,'simpfn,'rationalize); its now activated by a switch. put('polynorm,'polyfn,'polynorm); %*** support functions ***; Comment the function ilnrsolve and others are identical to the %ones in matr except they work only on integers here; %there should be better algorithms; symbolic procedure reducepowers u; %reduces powers with the help of the defining polynomial; if domainp u or (ldeg u<pdeg car repowl!*) then u else if ldeg u=pdeg car repowl!* then addf(multf(cdr repowl!*,lc u),red u) else reducepowers addf(multf(multpf(mvar u .** (ldeg u-pdeg car repowl!*),lc u), cdr repowl!*),red u); symbolic procedure mkqmatr u; %u is an ar domainelement, result is a matrix form which %needs to be inverted for calculating the inverse of ar; begin scalar r,x,v,w; v := mkqcol u; for each k in cdr reverse arbase!* do <<w := reducepowers multpf(k,u); v := for each j in arbase!* collect <<r := ((if atom j then ratn w else if domainp w then 0 . 1 else if j=lpow w then <<x:=ratn lc w; w:=cdr w; x>> else 0 . 1) . car v); v := cdr v; r>>>>; return v end; symbolic procedure mkqcol u; %u is an ar domainelement result is a matrix form %representing u as a coefficient matrix of the ar base; begin scalar x,v; v := for each j in arbase!* collect if atom j then list ratn u else if domainp u then list(0 . 1) else if j=lpow u then <<x:=list ratn lc u; u:=cdr u; x>> else list(0 . 1); return v end; symbolic procedure ratn u; if null u then 0 . 1 else if atom u then u . 1 else if car u eq '!:rn!: then cdr u else rerror(arnum,6,"Illegal domain in :ar:"); symbolic procedure inormmat u; begin integer y; scalar z; % x := 1; for each v in u do <<y := 1; for each w in v do y := ilcm(y,denr w); z := (for each w in v collect numr w*y/denr w) . z>>; return reverse z end; symbolic procedure ilcm(u,v); if u=0 or v=0 then 0 else if u=1 then v else if v=1 then u else u*v/gcdn(u,v); symbolic procedure ilnrsolve(u,v); %u is a matrix standard form, v a compatible matrix form; %value is u**(-1)*v; begin integer n; n := length u; v := ibacksub(ibareiss inormmat ar!-augment(u,v),n); u := ar!-rhside(car v,n); v := cdr v; return for each j in u collect for each k in j collect mkrn(k,v) end; symbolic procedure ar!-augment(u,v); % Same as augment in bareiss module. if null u then nil else append(car u,car v) . ar!-augment(cdr u,cdr v); symbolic procedure ar!-rhside(u,m); % Same as rhside in bareiss module. if null u then nil else pnth(car u,m+1) . ar!-rhside(cdr u,m); symbolic procedure ibareiss u; %as in matr but only for integers; begin scalar ik1,ij,kk1,kj,k1j,k1k1,ui,u1,x; integer k,k1,aa,c0,ci1,ci2; aa:= 1; k:= 2; k1:=1; u1:=u; go to pivot; agn: u1 := cdr u1; if null cdr u1 or null cddr u1 then return u; aa:=nth(car u1,k); %aa := u(k,k); k:=k+2; k1:=k-1; u1:=cdr u1; pivot: %pivot algorithm; k1j:= k1k1 := pnth(car u1,k1); if car k1k1 neq 0 then go to l2; ui:= cdr u1; %i := k; l: if null ui then return nil else if car(ij := pnth(car ui,k1))=0 then go to l1; l0: if null ij then go to l2; x:= car ij; rplaca(ij,-car k1j); rplaca(k1j,x); ij:= cdr ij; k1j:= cdr k1j; go to l0; l1: ui:= cdr ui; go to l; l2: ui:= cdr u1; %i:= k; l21: if null ui then return; %if i>m then return; ij:= pnth(car ui,k1); c0:= car k1k1*cadr ij-cadr k1k1*car ij; if c0 neq 0 then go to l3; ui:= cdr ui; %i:= i+1; go to l21; l3: c0:= c0/aa; kk1 := kj := pnth(cadr u1,k1); %kk1 := u(k,k-1); if cdr u1 and null cddr u1 then go to ev0 else if ui eq cdr u1 then go to comp; l31: if null ij then go to comp; %if i>n then go to comp; x:= car ij; rplaca(ij,-car kj); rplaca(kj,x); ij:= cdr ij; kj:= cdr kj; go to l31; %pivoting complete; comp: if null cdr u1 then go to ev; ui:= cddr u1; %i:= k+1; comp1: if null ui then go to ev; %if i>m then go to ev; ik1:= pnth(car ui,k1); ci1:= (cadr k1k1*car ik1-car k1k1*cadr ik1)/aa; ci2:= (car kk1*cadr ik1-cadr kk1*car ik1)/aa; if null cddr k1k1 then go to comp3;%if j>n then go to comp3; ij:= cddr ik1; %j:= k+1; kj:= cddr kk1; k1j:= cddr k1k1; comp2: if null ij then go to comp3; rplaca(ij,(car ij*c0+car kj*ci1+car k1j*ci2)/aa); ij:= cdr ij; kj:= cdr kj; k1j:= cdr k1j; go to comp2; comp3: ui:= cdr ui; go to comp1; ev0:if c0=0 then return; ev: kj := cdr kk1; x := cddr k1k1; %x := u(k-1,k+1); rplaca(kj,c0); ev1:kj:= cdr kj; if null kj then go to agn; rplaca(kj,(car k1k1*car kj-car kk1*car x)/aa); x := cdr x; go to ev1 end; symbolic procedure ibacksub(u,m); begin scalar ij,ijj,ri,uj,ur; integer i,jj,summ,detm,det1; %n in comments is number of columns in u; if null u then rerror(arnum,7,"Singular matrix"); ur := reverse u; detm := car pnth(car ur,m); %detm := u(i,j); if detm=0 then rerror(arnum,8,"Singular matrix"); i := m; rows: i := i-1; ur := cdr ur; if null ur then return u . detm; %if i=0 then return u . detm; ri := car ur; jj := m+1; ijj:=pnth(ri,jj); r2: if null ijj then go to rows; %if jj>n then go to rows; ij := pnth(ri,i); %j := i; det1 := car ij; %det1 := u(i,i); uj := pnth(u,i); summ := 0; %summ := 0; r3: uj := cdr uj; %j := j+1; if null uj then go to r4; %if j>m then go to r4; ij := cdr ij; summ := summ+car ij*nth(car uj,jj); %summ:=summ+u(i,j)*u(j,jj); go to r3; r4: rplaca(ijj,(detm*car ijj-summ)/det1); %u(i,j):=(detm*u(i,j)-summ)/det1; jj := jj+1; ijj := cdr ijj; go to r2 end; initdmode 'arnum; put('arnum,'simpfg, '((t (setdmode (quote arnum) t)) (nil (setdmode (quote arnum) nil) (release arvars!*) (uncurrep arvars!*) (setq curdefpol!* nil) (setq arvars!* nil)))); endmodule; module arinv; % Routines for inversion of algebraic numbers. % Author: Eberhard Schruefer. fluid '(dmode!*); global '(arbase!* curdefpol!*); symbolic procedure arquot(u,v); % U is an ar domain element, result is a matrix form which % needs to be inverted for calculating the inverse of ar. begin scalar mv,r,sgn,x,y,z,w,dmode!*; integer n; mv := mvar curdefpol!*; x := u; w := for each k in cdr arbase!* collect (x := reducepowers multf(!*k2f mv,x)); x := nil; w := negf v . (u . w); for j := (ldeg curdefpol!* - 1) step -1 until 0 do <<y := nil; z := 1; n := -2; w := for each k in w collect if (degr(k,mv) = j) and k then <<y := list(n := n+1) . * (r := if domainp k then k else lc k) .+ y; if eqcar(r,'!:rn!:) then z := ilcm(z,cddr r); if null domainp k then red k>> else <<n := n + 1; k>>; if z neq 1 then y := for each j on y collect lpow j .* if eqcar(lc j,'!:rn!:) then cadr lc j*z/cddr lc j else lc j*z; if null x then x := y else x := b!:extmult(y,x)>>; sgn := evenp length lpow x; z := nil; for each j in lpow x do z := addf(if j = 0 then arnum!-mkglsol(0,x,sgn := not sgn,-1) else multpf(mv to j, arnum!-mkglsol(j,x,sgn:=not sgn,-1)),z); return z end; symbolic procedure arquot1 u; % U is an ar domain element, result is a matrix form which % needs to be inverted for calculating the inverse of ar. begin scalar mv,r,sgn,x,y,z,w,dmode!*; integer n; mv := mvar curdefpol!*; x := u; w := for each k in cdr arbase!* collect (x := reducepowers multf(!*k2f mv,x)); x := nil; w := -1 . (u . w); for j := (ldeg curdefpol!* - 1) step -1 until 0 do <<y := nil; z := 1; n := -2; w := for each k in w collect if (degr(k,mv) = j) and k then <<y := list(n := n+1) . * (r := if domainp k then k else lc k) .+ y; if eqcar(r,'!:rn!:) then z := ilcm(z,cddr r); if null domainp k then red k>> else <<n := n + 1; k>>; if z neq 1 then y := for each j on y collect lpow j .* if eqcar(lc j,'!:rn!:) then cadr lc j*z/cddr lc j else lc j*z; if null x then x := y else x := b!:extmult(y,x)>>; sgn := evenp length lpow x; z := nil; for each j in lpow x do z := addf(if j = 0 then arnum!-mkglsol(0,x,sgn := not sgn,-1) else multpf(mv to j, arnum!-mkglsol(j,x,sgn := not sgn,-1)),z); return z end; symbolic procedure arinv u; % Sort of half-extended gcd. No B-technique applied yet. % Performance is pretty bad. begin scalar mv,sgn,x,z,v,dmode!*; integer k,m,n; m := ldeg curdefpol!*; n := ldeg u; v := curdefpol!*; mv := mvar curdefpol!*; x := list(m-1) .* lc u .+ (list(-1) .* lc v .+ nil); for j := 2:(n+m) do begin scalar y; if j=(n+m) then y := list(-n-1) .* -1 .+ nil else nil; if (n + m - j - degr(v,mv) + 1) = 0 then v := red v; if (n + m - j - degr(u,mv) + 1) = 0 then u := red u; z := u; a: if z and ((k := m - j + n - degr(z,mv))<m) then y := list k .* (if domainp z then z else lc z) .+ y else go to b; if null domainp z then z := red z else z := nil; go to a; b: z := v; c: if z and ((k := - j + m - degr(z,mv))<0) then y := list k .* (if domainp z then z else lc z) .+ y else go to d; if null domainp z then z := red z else z := nil; go to c; d: x := b!:extmult(y,x) end; sgn := evenp length lpow x; z := nil; for each j in lpow x do if j > -1 then z := addf(if j = 0 then arnum!-mkglsol(0,x,sgn := not sgn,-n-1) else multpf(mv to j, arnum!-mkglsol(j,x,sgn:=not sgn,-n-1)),z); return z end; symbolic procedure arnum!-mkglsol(u,v,sgn,n); begin scalar s,x,y,dmode!*; dmode!* := '!:rn!:; y := lpow v; for each j on red v do if s := arnum!-glsolterm(u,y,j,n) then x := s; return int!-equiv!-chk mkrn(if sgn then -x else x,lc v) end; symbolic procedure arnum!-glsolterm(u,v,w,n); begin scalar x,y,sgn; x := lpow w; a: if null x then return if car y = n then lc w; if car x = u then return nil else if car x member v then <<x := cdr x; if y then sgn := not sgn>> else if y then return nil else <<y := list car x; x := cdr x>>; go to a end; endmodule; end;