Artifact adc64cf1701329792ba5e78f7f617beb9161efb5b4dda04ad7b4a7317b441a64:
- Executable file
r38/log/rlfi.rlg
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 2921) [annotate] [blame] [check-ins using] [more...]
Tue Apr 15 00:34:22 2008 run on win32 off echo,msg; \documentstyle{article} \begin{document} \begin{displaymath} \frac{a^{5}+5 a^{4} b+10 a^{3} b^{2}+10 a^{2} b^{3}+5 a b^{4}+b^{5}}{a^{4}-4 a ^{3} b+6 a^{2} b^{2}-4 a b^{3}+b^{4}} \end{displaymath} \begin{displaymath} x=a^{3}+3 a^{2} b+3 a b^{2}+b^{3} \end{displaymath} \begin{displaymath} \left\{ a^{3}+3 a^{2} b+3 a b^{2}+b^{3} , 3 \left(a^{2}+2 a b+b^{2}\right) , 6 \left(a +b\right) \right\} \end{displaymath} \begin{displaymath} \left\{ \left\{ a , a^{3}+3 a^{2} b+3 a b^{2}+b^{3} \right\} , a^{3}+3 a^{2} b+3 a b^{2}+b^{3} \right\} \end{displaymath} \begin{verbatim} REDUCE Input: solve(a^7-13*a+5); Unknown: a \end{verbatim} \begin{displaymath} \left\{ a={\rm root\_of} \left(a\_^{7}-13 a\_+5,a\_,tag\_1\right) \right\} \end{displaymath} \begin{verbatim} REDUCE Input: solve(a**(2*y)-3*a**y+2,y); \end{verbatim} \begin{displaymath} \left\{ y=\left(2 {\rm arbint} _{2} i \pi +\log \,2\right)/\log \,a , y=\left(2 {\rm arbint} _{1} i \pi \right)/\log \,a \right\} \end{displaymath} \begin{verbatim} REDUCE Input: off verbatim; \end{verbatim} \begin{displaymath} 3 \left(\frac{{\rm d}^{2}a}{{\rm d}c^{2}} a^{2}+2 \frac{{\rm d}^{2}a}{{\rm d}c ^{2}} a b+\frac{{\rm d}^{2}a}{{\rm d}c^{2}} b^{2}+2 \left(\frac{{\rm d}\,a}{ {\rm d}\,c}\right)^{2} a+2 \left(\frac{{\rm d}\,a}{{\rm d}\,c}\right)^{2} b \right) \end{displaymath} \begin{displaymath} \cos ^{2}\,\alpha +\sin ^{2}\,\alpha =1 \end{displaymath} \begin{displaymath} \sin \left(\alpha +\beta \right)=\cos \,\alpha \: \sin \,\beta \:+\cos \, \beta \: \sin \,\alpha \: \end{displaymath} \begin{displaymath} \frac{\partial \,{\bf \tilde{u}}^{e}}{\partial \,t}+c \frac{\partial ^{2}{\bf \tilde{u}}^{e}}{\partial x^{2}}+b \frac{\partial \,{\bf \tilde{u}}^{i}}{ \partial \,x}={\bf f}^{e} \end{displaymath} \begin{displaymath} \frac{{\bf \tilde{u}}^{e}_{j+1,k}-{\bf \tilde{u}}^{e}_{jk}}{\delta \,t}+c \frac{{\bf \tilde{u}}^{e}_{j,k+1}-2 {\bf \tilde{u}}^{e}_{jk}+{\bf \tilde{u}}^{ e}_{j,k-1}}{\delta ^{2}\,x}+b \frac{{\bf \tilde{u}}^{i}_{j,k+1/2}-{\bf \tilde{ u}}^{i}_{j,k-1/2}}{\delta \,x}={\bf f}^{e} \end{displaymath} \begin{verbatim} REDUCE Input: product(k=1,2*n+1,f(2*i k+1)\(i(2*k+1)-1)); \end{verbatim} \begin{displaymath} \prod _{k=1}^{2 n+1}\frac{{\bf f}^{2 i_{k}+1}}{i_{2 k+1}-1} \end{displaymath} \begin{verbatim} REDUCE Input: int(u(e,j,k,x)*f(e,x),x); \end{verbatim} \begin{displaymath} \int {\bf \tilde{u}}^{e}_{jk}\left(x\right) {\bf f}^{e}\left(x\right)\:d\,x \end{displaymath} \begin{verbatim} REDUCE Input: sum(i=0,n,sqrt u(e,i)); \end{verbatim} \begin{displaymath} \sum _{i=0}^{n}\sqrt {{\bf \tilde{u}}^{e}_{i}} \end{displaymath} \begin{verbatim} REDUCE Input: off latex,verbatim; \end{verbatim} \end{document} Time for test: 6 ms, plus GC time: 8 ms