Artifact ad776e50eba98b9286c8f67693ab9c79ba8eeec773c6d79c4c6dfedca33b66f5:
- Executable file
r38/log/mrvlimit.rlg
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 6087) [annotate] [blame] [check-ins using] [more...]
Tue Apr 15 00:35:34 2008 run on win32 off exp; off mcd; mrv_limit(e^x,x,infinity); infinity ex:=log(log(x)+log(log(x)))-log(log(x)); ex := - (log(log(x)) - log(log(log(x)) + log(x))) ex:=ex/(log(log(x)+log(log(log(x))))); ex := -1 - (log(log(x)) - log(log(log(x)) + log(x)))*log(log(log(log(x))) + log(x)) ex:=ex*log(x); ex := - (log(log(x)) - log(log(log(x)) + log(x))) -1 *log(log(log(log(x))) + log(x)) *log(x) mrv_limit(e^-x,x,infinity); 0 mrv_limit(log(x),x,infinity); infinity mrv_limit(1/log(x),x,infinity); 0 a:=e^(1/x-e^-x)-e^(1/x); -1 - x x - e a := e *(e - 1) a:=a/e^(-x); -1 - x x + x - e a := e *(e - 1) mrv_limit(a,x,infinity) ; -1 % all of these are correct mrv_limit(e^-x,x,infinity) ; 0 mrv_limit(log(x),x,infinity) ; infinity mrv_limit(1/log(x),x,infinity) ; 0 a:=e^(1/x-e^-x)-e^(1/x); -1 - x x - e a := e *(e - 1) a:=a/e^(-x); -1 - x x + x - e a := e *(e - 1) b:=e^x*(e^(1/x-e^-x)-e^(1/x)); -1 - x x + x - e b := e *(e - 1) %c:=e^x*(e^(1/x+e^(-x)+e^(-x^2))-e^(1/x-e^(-e^x))) maxi1({e^(-x^2)},{e^x}); 2 - x {e } cc:= e^(log(log(x+e^(log(x)*log(log(x)))))/log(log(log(e^x+x+log(x))))); x -1 log(x) log(log(log(log(x) + x + e ))) *log(log(log(x) + x)) cc := e b:=e^x*(e^(1/x-e^-x)-e^(1/x)); -1 - x x + x - e b := e *(e - 1) c:=e^x*(e^(1/x+e^(-x)+e^(-x^2))-e^(1/x-e^(-e^x))); x 2 -1 - e - x - x x + x - e e + e c := - e *(e - e ) e^(log(log(x+e^(log(x)*log(log(x)))))/(log(log(log(e^x+x+log(x)))))); x -1 log(x) log(log(log(log(x) + x + e ))) *log(log(log(x) + x)) e %% mrv_limit(ws,x,infinity); aa:=e^(e^(e^x)); x e e aa := e bb:=e^(e^(e^(x-e^(-e^x)))); x - e - e + x e e bb := e ex1:=(e^x)*(e^((1/x)-e^(-x))-e^(1/x)); -1 - x x + x - e ex1 := e *(e - 1) % returns -1 correct ex2:=(e^x)*(e^((1/x)-e^(-x)-e^(-x^2))-e^((1/x)-e^(-e^x))); x 2 -1 - e - x - x x + x - e - e - e ex2 := - e *(e - e ) % returns infinity ex3:=e^(e^(x-e^-x)/(1-1/x))-e^(e^x); - x x - e + x -1 -1 e - e *(x - 1) ex3 := - (e - e ) % returns - infinity ex4:=e^(e^((e^x)/(1-1/x)))-e^(e^((e^x)/(1-1/x-(log(x))^(-log(x))))); x - log(x) -1 -1 x -1 -1 - e *(log(x) + x - 1) - e *(x - 1) e e ex4 := - (e - e ) ex5:=(e^(e^(e^(x+e^-x))))/(e^(e^(e^x))); - x e + x x e e e - e ex5 := e ex6:=(e^(e^(e^x)))/(e^(e^(e^(x-e^(-e^x))))); x - e - e + x x e e - e + e ex6 := e ex7:=(e^(e^(e^x)))/(e^(e^(e^(x-e^(e^x))))); x e - e + x x e e - e + e ex7 := e ex8:=(e^(e^x))/(e^(e^(x-e^(-e^(e^x))))); x e - e - e + x x - e + e ex8 := e ex9:=((log(x)^2)*e^(sqrt(log(x))*((log(log(x)))^2)*e^((sqrt(log(log(x))))*(log(log(log(x)))^3))))/sqrt(x); ex9 := 3 sqrt(log(log(x)))*log(log(log(x))) 2 - 1/2 e *sqrt(log(x))*log(log(x)) 2 x *e *log(x) ex10:=((x*log(x))*(log(x*e^x-x^2))^2)/(log(log(x^2+2*e^(3*x^3*log(x))))); 3 3*x 2 -1 x 2 ex10 := log(log(2*x + x )) *log((e - x)*x) *log(x)*x misc1:=1/(e^(-x+e^-x))-e^x; - x x - e misc1 := e *(e - 1) % returns -1 correct misc2:=(e^(1/x-e^-x)-e^(1/x))/(e^-x); -1 - x x + x - e misc2 := e *(e - 1) % returns -1 correct misc3:=e^(-log(x+e^-x)); - x -1 misc3 := (e + x) % returns 0 correct misc4:=e^(x-e^x); x - e + x misc4 := e % returns 0 correct % bb limit is infinity correct mrv_limit(ex,x,infinity); 1 %1 mrv_limit(ex1,x,infinity); -1 % -1 %% mrv_limit(ex2,x,infinity); % -1 %% mrv_limit(b,x,infinity); % -1 mrv_limit(a,x,infinity); - infinity %% mrv_limit(ex3,x,infinity); %% mrv_limit(ex4,x,infinity); %% mrv_limit(ex5,x,infinity); % 0 %% mrv_limit(ex6,x,infinity); mrv_limit(misc1,x,infinity); -1 mrv_limit(misc2,x,infinity); - infinity mrv_limit(misc3,x,infinity); 0 mrv_limit(misc4,x,infinity); 0 end; Time for test: 1280 ms, plus GC time: 45 ms