Artifact ad30367de91787b9b4533144ef1600c94b3be23435d04125029d3e71b5ac1275:
- File
r34.1/lib/wu.red
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 14535) [annotate] [blame] [check-ins using] [more...]
- File
r34/lib/wu.red
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 14535) [annotate] [blame] [check-ins using]
- File
r35/lib/wu.red
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 14535) [annotate] [blame] [check-ins using]
module wu; % Simple implementation of the Wu algorithm. % Author: Russell Bradford % School of Mathematical Sciences % University of Bath % Bath % Avon BA2 7AY % United Kingdom % E-mail: rjb@maths.bath.ac.uk % First distributed version: 8 July 90 % Bug fixes in wupseudodivide, and misc other changes: 28 Aug 90 % This is a simple implementation of the Wu algorithm, intended to help % myself understand the method. As such, there is little optimization, % and indeed, only implements the basic version from % % "A Zero Structure Theorem for Polynomial-Equations-Solving", % Wu Wen-tsun, Institute of Systems Science, Academia Sinica, Beijing % Interface: % much as the Groebner basis package: % % wu({x*y-a, x^y+y^2-b}, {x, y}); % % uses Wu on the named polynomials with ordering on the variables x > y. % returns a list of pairs { characteristic set, initial } % % { {{a^2 - b*y^2 + y^4}, y} } % % The zeros of the input polynomials are the the union of the zeros of % the characteristic sets, subject to the initials being non-zero. % Thus the zeros of {x*y-a, x^y+y^2-b} are the zeros of % {a^2 - b*y^2 + y^4, a - x*y} subject to y neq 0. % % The switch % % on trwu; % % prints some tracing of the algorithm as it works, in particular the % choice of basic sets, and the computation of characteristic sets. % This package runs on Reduce 3.3. % Keywords: polynomial reduction characteristic set sets initial % ascending % chrstrem Wu % All improvements and bug fixes are welcomed!! % Possible bug fixes, improvements: % Should use distributed polys, then class is an integer; % rather than use union, use an insertion sort; % return a list of {{polys},{initials}}; % fix pseudo divide for when there is a non-trivial content in the % remainder; % many opportunities for reusing data from a previous iteration, e.g., % when a new polynomial added into a basic set is less than all % current members of the basic set, and they are reduced wrt it. % factor out monomials and numeric contents symbolic; fluid '(!*trwu !*trchrstrem wuvarlist!* kord!*); switch trwu, trchrstrem; procedure wuconstantp f; % A constant is a poly that does not involve any of the interesting % variables. domainp f or not memq(mvar f, wuvarlist!*); smacro procedure wuclass f; if wuconstantp f then nil else mvar f; smacro procedure wudeg f; if wuconstantp f then 0 else ldeg f; smacro procedure wuinitial f; if wuconstantp f then f else lc f; procedure wureducedpolysp(f, polylist); % if f reduced wrt the polys in polylist? null polylist or (wureducedp(f, car polylist) and wureducedpolysp(f, cdr polylist)); procedure wureducedp(g, f); % is g reduced wrt f? wuconstantp f or wuconstantp g or deginvar(g, wuclass f) < ldeg f; procedure deginvar(f, x); % the degree of x in f if wuconstantp f then 0 else if mvar f = x then ldeg f else begin scalar kord!*; kord!* := list x; f := reorder f; return if mvar f = x then ldeg f else 0 end; % wukord* = '(x y a) means: all other symbols < x < y < a fluid '(wukord!*); procedure symbollessp(x, y); % an ordering on symbols: Cambs lisp and PSL orderp differ on nils if null y then nil else if null x then t else if wukord!* then wuorderp(x, y) else not orderp(x, y); procedure wuorderp(x, y); % an order on the symbols has been specified % return T if x < y % circumlocutions abound begin scalar kord, answ; if x eq y then return nil; kord := wukord!*; while kord and not answ do if x eq car kord then answ := if memq(y, cdr kord) then 'yes else 'no else if y eq car kord then answ := if memq(x, cdr kord) then 'no else 'yes else kord := cdr kord; return if answ then answ eq 'yes else not orderp(x, y) end; smacro procedure classlessp(c1, c2); % an order on classes, which are symbols in this implementation symbollessp(c1, c2); procedure wulessp(f, g); % standard forms f and g % a partial order classlessp(wuclass f, wuclass g) or (wuclass f = wuclass g and wudeg f < wudeg g); procedure wulessp!*(f, g); % as above, but use some arbitrary means to complete to a total order if wulessp(f, g) then t else if wulessp(g, f) then nil else totallessp(f, g); smacro procedure nil2zero f; f or 0; procedure totallessp(f, g); % a total order on polynomials totalcompare(f, g) = 'less; procedure totalcompare(f, g); % order f and g % horrid bit of code if f = g then 'equal else if wulessp(f, g) then 'less else if wulessp(g, f) then 'greater else if wuconstantp f then % and so wuconstantp g totalcompareconstants(f, g) else begin scalar answ; answ := totalcompare(lc f, lc g); if answ neq 'equal then return answ; return totalcompare(red f, red g) end; procedure totalcompareconstants(f, g); % order the constants f and g if f = g then 'equal else if domainp f then if domainp g then % Assumption of ints if nil2zero f < nil2zero g then 'less else 'greater else 'less else if domainp g then 'greater else begin scalar wukord!*, wuvarlist!*, answ; if symbollessp(mvar f, mvar g) then return 'less else if symbollessp(mvar g, mvar f) then return 'greater else answ := totalcompareconstants(lc f, lc g); if answ neq 'equal then return answ; return totalcompareconstants(red f, red g) end; procedure wusort polylist; % sort a list of polys into Wu order sort(polylist, 'wulessp!*); procedure collectvars polylist; % make a list of the variables appearing in the list of polys begin scalar varlist; varlist := for each poly in polylist conc collectpolyvars poly; return sort(union(varlist, nil), 'symbollessp) end; procedure collectpolyvars poly; collectpolyvarsaux(poly, nil); procedure collectpolyvarsaux(poly, sofar); if domainp poly then sofar else union( union(sofar, list mvar poly), union(collectpolyvarsaux(lc poly, nil), collectpolyvarsaux(red poly, nil))); procedure pickbasicset polylist; % find a basic set from the ordered list of polys begin scalar basicset; foreach var in wuvarlist!* do << while polylist and symbollessp(mvar car polylist, var) do polylist := cdr polylist; while polylist and var = mvar car polylist and not wureducedpolysp(car polylist, basicset) do polylist := cdr polylist; if polylist and var = mvar car polylist then << basicset := car polylist . basicset; polylist := cdr polylist >> >>; return reversip basicset end; procedure wupseudodivide(f, g, x); % not a true pseudo divide---multiply f by the smallest power % of lc g necessary to make a fraction-free division begin scalar origf, oldkord, lcoeff, degf, degg, answ, fudge; origf := f; oldkord := setkorder list x; f := reorder f; if wuconstantp f or mvar f neq x then << setkorder oldkord; return nil . origf >>; g := reorder g; if wuconstantp g or mvar g neq x then << f := multf(f, quotf(g, gcdf!*(lc f, g))); setkorder oldkord; return reorder f . nil >>; degf := ldeg f; degg := ldeg g; if degf - degg + 1 < 0 then << setkorder oldkord; return nil . origf >>; lcoeff := lc g; lcoeff := exptf(lcoeff, degf - degg + 1); answ := qremf(multf(lcoeff, f), g); fudge := gcdf!*(gcdf!*(lcoeff, cdr answ), car answ); answ := quotf(car answ, fudge) . quotf(cdr answ, fudge); setkorder oldkord; return reorder car answ . reorder cdr answ; end; procedure simpwupseudodivide u; begin scalar f, g, x, answ; f := !*a2f car u; g := !*a2f cadr u; x := if cddr u then !*a2k caddr u else mvar f; answ := wupseudodivide(f, g, x); return list('list, mk!*sq !*f2q car answ, mk!*sq !*f2q cdr answ) end; put('wudiv, 'psopfn, 'simpwupseudodivide); procedure findremainder(f, polylist); % form the Wu-remainder of f wrt those polys in polylist << foreach poly in polylist do f := cdr wupseudodivide(f, poly, mvar poly); f >>; procedure prin2t!* u; % a useful procedure << prin2!* u; terpri!* t >>; procedure chrstrem polylist; % polylist a list of polynomials, to be Wu'd % horrible circumlocutions here begin scalar revbasicset, pols, rem, remainders; if !*trwu or !*trchrstrem then << terpri!* t; prin2t!* "--------------------------------------------------------"; >>; repeat << polylist := wusort polylist; if !*trwu or !*trchrstrem then << prin2t!* "The new pol-set in ascending order is"; foreach poly in polylist do printsf poly; terpri!* t; >>; if wuconstantp car polylist then << if !*trwu then prin2t!* "which is trivially trivial"; remainders := 'inconsistent; revbasicset := list 1; >> else << remainders := nil; % Keep in reverse order. revbasicset := reversip pickbasicset polylist; >>; if !*trwu and null remainders then << prin2t!* "A basic set is"; foreach poly in reverse revbasicset do printsf poly; terpri!* t; >>; pols := setdiff(polylist, revbasicset); foreach poly in pols do if remainders neq 'inconsistent then << if !*trwu then << prin2!* "The remainder of "; printsf poly; prin2!* "wrt the basic set is " >>; rem := findremainder(poly, revbasicset); if !*trwu then << printsf rem; >>; if rem then if wuconstantp rem then << remainders := 'inconsistent; if !*trwu then << prin2t "which is a non-zero constant, and so"; prin2t "the equations are inconsistent." >> >> else remainders := union(list absf rem, remainders); >>; if remainders and remainders neq 'inconsistent then polylist := append(polylist, remainders) >> until null remainders or remainders = 'inconsistent; if remainders = 'inconsistent then revbasicset := list 1; if !*trwu or !*trchrstrem then << terpri!* t;terpri!* t; prin2t!* "The final characteristic set is:"; foreach poly in reverse revbasicset do printsf poly >>; return reversip foreach poly in revbasicset collect absf poly end; procedure simpchrstrem u; begin scalar answ, polylist, wuvarlist!*; polylist := foreach f in u collect !*a2f f; wuvarlist!* := colectvars polylist; answ := chrstrem polylist; return 'list . foreach f in answ collect mk!*sq !*f2q f; end; put('chrstrem, 'psopfn, 'simpchrstrem); procedure wu(polylist, varlist); % Do the Wu algorithm. % Vars in varlist arranged in increasing order. % Return (((poly, poly, ... ) . initial) ... ), a list of characteristic % sets dotted onto the product of their initials. % Very parallelizable. begin scalar stufftodo, answ, polset, chrset, initialset, initial, wuvarlist!*; stufftodo := list delete(nil, union(foreach poly in polylist collect absf poly, nil)); if null car stufftodo then << if !*trwu then prin2t!* "trivial CHS"; return list(list nil . 1); >>; if null varlist then << if !*trwu then prin2t!* "trivial CHS"; return list(list 1 . 1); >>; wuvarlist!* := varlist; while stufftodo do << polset := wusort car stufftodo; stufftodo := cdr stufftodo; chrset := chrstrem polset; if chrset neq '(1) then << initialset := foreach pol in chrset collect wuinitial pol; initial := 1; foreach pol in initialset do initial := multf(initial, pol); if !*trwu then << prin2!* "with initial "; printsf initial; >>; if member(initial, chrset) then << if !*trwu then prin2t!* "which we discard, as the initial is a member of the CHS"; >> else answ := union(list(chrset . initial), answ); foreach initial in initialset do if not wuconstantp initial then << if member(initial, polset) then << prin2t!* "*** Something awry: the initial is a member of the polset"; answ := union(list(polset . 1), answ) % unsure of this one. >> else stufftodo := union(list wusort(initial . polset), stufftodo) >> >> >>; if null answ then answ := list(list 1 . 1); if !*trwu then << terpri!* t;terpri!* t; prin2t!* "--------------------------------------------------------"; prin2t!* "Final result:"; foreach zset in answ do << prin2t!* "Ascending set"; foreach f in car zset do printsf f; prin2!* "with initial "; printsf cdr zset; terpri!* t >> >>; return answ; end; procedure simpwu u; % rebind kord* to reflect the wu order of kernels begin scalar pols, vars, oldkord, answ, nargs; nargs := length u; if nargs = 0 or nargs > 2 then rederr "Wu called with wrong number of arguments"; pols := aeval car u; if nargs = 2 then vars := aeval cadr u; if (nargs = 1 and not eqcar(pols, 'list)) or (nargs = 2 and not eqcar(vars, 'list)) then rederr "Wu: syntax wu({poly, ...}) or wu({poly, ...}, {var, ...})"; oldkord := kord!*; if nargs = 1 then begin scalar kord!*, polset, vars; kord!* := if wukord!* then reverse wukord!* else oldkord; polset := foreach f in cdr pols collect reorder !*a2f f; vars := collectvars polset; if !*trwu then << terpri!* t; prin2!* "Wu variables in decreasing order: "; foreach id in reverse vars do << prin2!* id; prin2!* " " >>; terpri!* t >>; answ := wu(polset, vars) end else % nargs = 2 begin scalar kord!*, polset, wukord!*; kord!* := foreach k in cdr vars collect !*a2k k; wukord!* := reverse kord!*; polset := foreach f in cdr pols collect reorder !*a2f f; answ := wu(polset, wukord!*) end; return 'list . foreach zset in answ collect 'list . list('list . foreach f in car zset collect mk!*sq !*f2q absf reorder f, mk!*sq !*f2q absf reorder cdr zset) end; put('wu, 'psopfn, 'simpwu); remprop('wu, 'number!-of!-args); %procedure wukord u; %% hack to specify order of kernels in Wu %% wukord a,y,x => other kernels < a < y < x % wukord!* := if u = '(nil) then nil % else foreach x in u collect !*a2k x; % %rlistat '(wukord); algebraic; endmodule; end;