Artifact a6e649fd9fba1cf83b4b635755169baf3b3d08a346fd1907f221b927bf6b8cb3:
- File
r35/xlog/ghyper.log
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 2735) [annotate] [blame] [check-ins using] [more...]
Codemist Standard Lisp 3.54 for DEC Alpha: May 23 1994 Dump file created: Mon May 23 10:39:11 1994 REDUCE 3.5, 15-Oct-93 ... Memory allocation: 6023424 bytes +++ About to read file ndotest.red % Test cases for hypergeometric functions % from Wolfram Koepf: Power Series in Computer Algebra % J. Symbolic Computation 13, (1992) load_package specfn2; *** erfc already defined as operator (specfn2) hypergeometric({-alpha},{},x); *** hypergeometric declared operator hypergeometric({ - alpha},{},x) hypergeometric({},{},x); hypergeometric({},{},x) x * hypergeometric({1,1},{2},x); hypergeometric({1,1},{2},x)*x x * hypergeometric({},{3/2},-x^2/4); 2 3 - x hypergeometric({},{---},-------)*x 2 4 hypergeometric({},{1/2},-x^2/4); 2 1 - x hypergeometric({},{---},-------) 2 4 x * hypergeometric({},{3/2},x^2/4); 2 3 x hypergeometric({},{---},----)*x 2 4 hypergeometric({},{1/2},x^2/4); 2 1 x hypergeometric({},{---},----) 2 4 x * hypergeometric({1/2,1/2},{3/2},x^2); 1 1 3 2 hypergeometric({---,---},{---},x )*x 2 2 2 x * hypergeometric({1/2,1},{3/2},-x^2); 1 3 2 hypergeometric({---,1},{---}, - x )*x 2 2 x * hypergeometric({1/2,1/2},{3/2},-x^2); 1 1 3 2 hypergeometric({---,---},{---}, - x )*x 2 2 2 x * hypergeometric({1/2,1},{3/2},x^2); 1 3 2 hypergeometric({---,1},{---},x )*x 2 2 % another example which shows the polynomial case: hypergeometric({12,12/34},{3},x); 6 hypergeometric({12,----},{3},x) 17 % Some more (nontrivial) examples from % Graham, Knuth, Ptashnik: Concrete Mathematics % Addison-Wesley Publishing Company, 1989 HYPERGEOMETRIC({a,b,-n},{c,a+b-c-n+1},1); hypergeometric({a,b, - n},{c,a + b - c - n + 1},1) % is known for integers though hypergeometric({a,b,-4},{c,a+b-c-4+1},z); hypergeometric({a,b,-4},{c,a + b - c - 3},z) hypergeometric({1-c-2n,-2n},{c},1); hypergeometric({ - c - 2*n + 1, - 2*n},{c},1) hypergeometric({a,b},{1+b-a},-1); hypergeometric({a,b},{ - a + b + 1},-1) % Kummer's formula (z=1) hypergeometric({a,b},{c},1); hypergeometric({a,b},{c},1) end; (TIME: ghyper 250 266) End of Lisp run after 0.28+1.44 seconds