Artifact a5661e9b65fe6bbefbf5a692f1a18fda0372438a293f861edc0564efd2d5e47a:
- Executable file
r37/doc/manual2/spde.tex
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 2874) [annotate] [blame] [check-ins using] [more...]
- Executable file
r38/doc/manual2/spde.tex
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 2874) [annotate] [blame] [check-ins using]
\chapter[SPDE: Symmetry groups of {PDE}'s]% {SPDE: A package for finding symmetry groups of {PDE}'s} \label{SPDE} \typeout{{SPDE: A package for finding symmetry groups of {PDE}'s}} {\footnotesize \begin{center} Fritz Schwarz \\ GMD, Institut F1 \\ Postfach 1240 \\ 5205 St. Augustin, Germany \\[0.05in] e--mail: fritz.schwarz@gmd.de \end{center} } \ttindex{SPDE} The package SPDE provides a set of functions which may be applied to determine the symmetry group of Lie- or point-symmetries of a given system of partial differential equations. Preferably it is used interactively on a computer terminal. In many cases the determining system is solved completely automatically. In some other cases the user has to provide some additional input information for the solution algorithm to terminate. \section{System Functions and Variables} The symmetry analysis of partial differential equations logically falls into three parts. Accordingly the most important functions provided by the package are: \begin{table} \begin{center} \begin{tabular}{| c | c | }\hline Function name & Operation \\ \hline \hline \ttindex{CRESYS} CRESYS(\s{arguments}) & Constructs determining system \\ \hline \ttindex{SIMPSYS} SIMPSYS() & Solves determining system \\ \hline \ttindex{RESULT} RESULT() & Prints infinitesimal generators \\ & and commutator table \\ \hline \end{tabular} \end{center} \caption{SPDE Functions} \end{table} Some other useful functions for obtaining various kinds of output are: \begin{table} \begin{center} \begin{tabular}{| c | c |} \hline Function name & Operation \\ \hline \hline \ttindex{PRSYS} PRSYS() & Prints determining system \\ \hline \ttindex{PRGEN} PRGEN() & Prints infinitesimal generators \\ \hline \ttindex{COMM} COMM(U,V) & Prints commutator of generators U and V \\ \hline \end{tabular} \end{center} \caption{SPDE Useful Output Functions}\label{spde:useful} \end{table} SPDE expects a system of differential equations to be defined as the values of the operator {\tt deq} and other operators. A simple example follows. \begin{verbatim} load_package spde; deq 1:=u(1,1)+u(1,2,2); deq(1) := u(1,2,2) + u(1,1) CRESYS deq 1; PRSYS(); GL(1):=2*df(eta(1),u(1),x(2)) - df(xi(2),x(2),2) - df(xi(2),x(1)) GL(2):=df(eta(1),u(1),2) - 2*df(xi(2),u(1),x(2)) GL(3):=df(eta(1),x(2),2) + df(eta(1),x(1)) GL(4):=df(xi(2),u(1),2) GL(5):=df(xi(2),u(1)) - df(xi(1),u(1),x(2)) GL(6):=2*df(xi(2),x(2)) - df(xi(1),x(2),2) - df(xi(1),x(1)) GL(7):=df(xi(1),u(1),2) GL(8):=df(xi(1),u(1)) GL(9):=df(xi(1),x(2)) The remaining dependencies xi(2) depends on u(1),x(2),x(1) xi(1) depends on u(1),x(2),x(1) eta(1) depends on u(1),x(2),x(1) \end{verbatim} A detailed description can be found in the SPDE documentation and examples.