Artifact a3dfd3435c58a06009ec8824da2cec875c924deff84ace5e11f3232701c2cb23:
- Executable file
r37/packages/groebner/ideals.tst
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 939) [annotate] [blame] [check-ins using] [more...]
- Executable file
r38/packages/groebner/ideals.tst
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 939) [annotate] [blame] [check-ins using]
I_setting(x,y,z); torder revgradlex; u := I(x*z-y**2, x**3-y*z); y member I(x,y^2); x member I(x,y^2); I(x,y^2) subset I(x,y); % yes I(x,y) subset I(x,y^2); % no % examples taken from Cox, Little, O'Shea: "Ideals, Varieties and Algorithms" q1 := u .: I(x); % quotient ideal q2 := u .+ I(x^2 * y - z^2); % sum ideal if q1 .= q2 then write "same ideal"; % test equality intersection(u,I(y)); % ideal intersection u .: I(y); u .: I(x,y); %----------------------------------------------------- u1 := I(x,y^2); u1u1:= u1 .* u1; % square ideal u0 :=I(x,y); % test equality/inclusion for u1,u1u1,u0 u1 .= u1u1; % no u1 subset u1u1; % no u1u1 subset u1; % yes u1 .= u0; % no u1 subset u0; % yes intersection (I(x) , I(x^2,x*y,y^2)) .= intersection(I(x) , I(x^2,y)); end;