Artifact a31f2ee61da59d7f55f7f6d776bd120f7198d9302e4a3e3552ce7cee11de29db:
- Executable file
r36/XMPL/DFPART.TST
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 2526) [annotate] [blame] [check-ins using] [more...]
depend y,x; generic_function f(x,y); df(f(),x); df(f(x,y),x); df(f(x,x**3),x); df(f(x,z**3),x); df(a*f(x,y),x); dfp(a*f(x,y),x); df(f(x,y),x,2); df(dfp(f(x,y),x),x); df(dfp(f(x,x**3),x),x); % using a generic fucntion with commutative derivatives generic_function u(x,y); dfp_commute u(x,y); df(u(x,y),x,x); % explicitly declare 1st and second derivative commutative generic_function v(x,y); let dfp(v(~a,~b),{y,x}) => dfp(v(a,b),{x,y}); df(v(),x,2); % substitute expressions for the arguments w:=df(f(),x,2); sub(x=0,y=x,w); % composite generic functions generic_function g(x,y); generic_function h(y,z); depend z,x; w:=df(g()*h(),x); sub(y=0,w); % substituting g*h for f in a partial derivative of f, % inheriting the arguments of f. Here no derivative of h % appears because h does not depend of x. sub(f=g*h,dfp(f(a,b),x)); % indexes. % in the following total differential the partial % derivatives wrt i and j do not appear because i and % j do not depend of x. generic_function m(i,j,x,y); df(m(i,j,x,y),x); % computation with a differential equation. generic_function f(x,y); operator y; let df(y(~x),x) => f(x,y(x)); % some derivatives df(y(x),x); df(y(x),x,2); df(y(x),x,3); sub(x=22,ws); % taylor expansion for y load_package taylor; taylor(y(x0+h),h,0,3); clear w; %------------------------ Runge Kutta ------------------------- % computing Runge Kutta formulas for ODE systems Y'=F(x,y(x)); % forms corresponding to Ralston Rabinowitz load_package taylor; operator alpha,beta,w,k; % s= order of Runge Kutta formula s:=3; generic_function f(x,y); operator y; % introduce ODE let df(y(~x),x)=>f(x,y(x)); % formal series for solution y1_form := taylor(y(x0+h),h,0,s); % Runge-Kutta Ansatz: let alpha(1)=>0; for i:=1:s do let k(i) => h*f(x0 + alpha(i)*h, y(x0) + for j:=1:(i-1) sum beta(i,j)*k(j)); y1_ansatz:= y(x0) + for i:=1:s sum w(i)*k(i); y1_ansatz := taylor(y1_ansatz,h,0,s); % compute y1_form - y1_ans and collect coeffients of powers of h y1_diff := num(taylortostandard(y1_ansatz)-taylortostandard(y1_form))$ cl := coeff(y1_diff,h); % f_forms: forms of f and its derivatives which occur in cl f_forms :=q := {f(x0,y(x0))}$ for i:=1:(s-1) do <<q:= for each r in q join {dfp(r,x),dfp(r,y)}; f_forms := append(f_forms,q); >>; f_forms; % extract coefficients of the f_forms in cl sys := cl$ for each fr in f_forms do sys:=for each c in sys join coeff(c,fr); % and eliminate zeros sys := for each c in sys join if c neq 0 then {c} else {}; end;