Artifact a1a4165ade3a1e64e84b07d90867b2ff6933a9c847ecc56d0ab971d4615071cd:
- Executable file
r37/packages/crack/applysym.tst
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 5643) [annotate] [blame] [check-ins using] [more...]
off echo, dfprint$ % FJW % You need crack.red and applysym.red to run this demo. % To use other contents of the program applysym, not demonstrated % in this demo you need the program liepde.red. % % To run this demo you read in files with % in "crack"$ % in "applysym.red"$ % or, to speed up the calculation you compile them before with % faslout "crack"$ % in "crack"$ % faslend$ % faslout "applysym"$ % in "applysym.red"$ % faslend$ % and then load them with % load crack,applysym$ lisp(depl!*:=nil)$ % clearing of all dependences setcrackflags()$ lisp(print_:=nil)$ lisp << write"-------------------------------------------------------"$terpri()$ write"This file is supposed to provide an automatic test of"$terpri()$ write"the program APPLYSYM. On the other hand the application"$terpri()$ write"of APPLYSYM is an interactive process, therefore the"$terpri()$ write"interested user should inspect the example described"$terpri()$ write"in APPLYSYM.TEX which demonstrates the application"$terpri()$ write"of symmetries to integrate a 2nd order ODE."$terpri()$ write"Here the program QUASILINPDE for integrating first"$terpri()$ write"order quasilinear PDE is demonstrated."$terpri()$terpri()$ write"The following equation comes up in the elimination"$terpri()$ write"of resonant terms in normal forms of singularities"$terpri()$ write"of vector fields (C.Herssens, P.Bonckaert, Limburgs"$terpri()$ write"Universitair Centrum/Belgium, private communication)."$terpri()$ write"-------------------------------------------------------"$terpri()$ >>$ depend w,x,y,z$ QUASILINPDE( df(w,x)*x+df(w,y)*y+2*df(w,z)*z-2*w-x*y, w, {x,y,z} )$ nodepend w,x,y,z$ lisp <<terpri()$ write"-------------------------------------------------------"$terpri()$ write"Comment:"$terpri()$ write"The result means that w is defined implicitly through "$terpri()$ terpri()$ write" x*y - log(z)*x*y + 2*w y "$terpri()$ write"0 = ff(-----,---------------------,---------) "$terpri()$ write" z z sqrt(z) "$terpri()$ terpri()$ write"with an arbitrary function ff of 3 arguments. As the PDE"$terpri()$ write"was linear, the arguments of ff are such that we can "$terpri()$ write"solve for w: "$terpri()$ terpri()$ write" x*y y "$terpri()$ write"w = log(z)*x*y/2 + z*f(-----,---------) "$terpri()$ write" z sqrt(z) "$terpri()$ terpri()$ write"with an arbitrary function f of 2 arguments."$terpri()$terpri()$ write"-------------------------------------------------------"$terpri()$ write"The following PDEs are taken from E. Kamke,"$terpri()$ write"Loesungsmethoden und Loesungen von Differential-"$terpri()$ write"gleichungen, Partielle Differentialgleichungen"$terpri()$ write"erster Ordnung, B.G. Teubner, Stuttgart (1979)."$terpri()$ >>$ write"------------------- equation 1.4 ----------------------"$ lisp(depl!*:=nil); depend z,x,y$ QUASILINPDE( x*df(z,x)-y, z, {x,y})$ write"------------------- equation 2.5 ----------------------"$ lisp(depl!*:=nil); depend z,x,y$ QUASILINPDE( x**2*df(z,x)+y**2*df(z,y), z, {x,y})$ write"------------------- equation 2.6 ----------------------"$ lisp(depl!*:=nil); depend z,x,y$ QUASILINPDE( (x**2-y**2)*df(z,x)+2*x*y*df(z,y), z, {x,y})$ write"------------------- equation 2.7 ----------------------"$ lisp(depl!*:=nil); depend z,x,y$ QUASILINPDE( (a0*x-a1)*df(z,x)+(a0*y-a2)*df(z,y), z, {x,y})$ write"------------------- equation 2.14 ---------------------"$ lisp(depl!*:=nil); depend z,x,y$ QUASILINPDE( a*df(z,x)+b*df(z,y)-x**2+y**2, z, {x,y})$ write"------------------- equation 2.16 ---------------------"$ lisp(depl!*:=nil); depend z,x,y$ QUASILINPDE( x*df(z,x)+y*df(z,y)-a*x, z, {x,y})$ write"------------------- equation 2.20 ---------------------"$ lisp(depl!*:=nil); depend z,x,y$ QUASILINPDE( df(z,x)+df(z,y)-a*z, z, {x,y})$ write"------------------- equation 2.21 ---------------------"$ lisp(depl!*:=nil); depend z,x,y$ QUASILINPDE( df(z,x)-y*df(z,y)+z, z, {x,y})$ write"------------------- equation 2.22 ---------------------"$ lisp(depl!*:=nil); depend z,x,y$ QUASILINPDE( 2*df(z,x)-y*df(z,y)+z, z, {x,y})$ write"------------------- equation 2.23 ---------------------"$ lisp(depl!*:=nil); depend z,x,y$ QUASILINPDE( a*df(z,x)+y*df(z,y)-b*z, z, {x,y})$ write"------------------- equation 2.24 ---------------------"$ lisp(depl!*:=nil); depend z,x,y$ QUASILINPDE( x*(df(z,x)-df(z,y))-y*df(z,y), z,{x,y})$ write"------------------- equation 2.25 ---------------------"$ lisp(depl!*:=nil); depend z,x,y$ QUASILINPDE( x*df(z,x)+y*df(z,y)-az, z, {x,y})$ write"------------------- equation 2.26 ---------------------"$ lisp(depl!*:=nil); depend z,x,y$ QUASILINPDE( x*df(z,x)+y*df(z,y)-z+x**2+y**2-1, z, {x,y})$ write"------------------- equation 2.39 ---------------------"$ lisp(depl!*:=nil); depend z,x,y$ QUASILINPDE( a*x**2*df(z,x)+b*y**2*df(z,y)-c*z**2, z, {x,y})$ write"------------------- equation 2.40 ---------------------"$ lisp(depl!*:=nil); depend z,x,y$ QUASILINPDE( x*y**2*df(z,x)+2*y**3*df(z,y)-2*(y*z-x**2)**2, z, {x,y})$ write"------------------- equation 3.12 ---------------------"$ lisp(depl!*:=nil); depend w,x,y,z$ QUASILINPDE( x*df(w,x)+(a*x+b*y)*df(w,y)+(c*x+d*y+f*z)*df(w,z), w, {x,y,z})$ write"------------------------ end --------------------------"$ lisp(depl!*:=nil); end;