Artifact 9f2483b542b87d19a82cd0c1a66e3ff6e4213831df0bc241df02c1d3e986c05a:
- Executable file
r37/doc/manual2/mrvlimit.tex
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 2461) [annotate] [blame] [check-ins using] [more...]
- Executable file
r38/doc/manual2/mrvlimit.tex
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 2461) [annotate] [blame] [check-ins using]
\chapter[MRVLIMIT: Limits of ``exp-log'' functions]% {MRVLIMIT: Package for Computing Limits of "Exp-Log" Functions} \label{MRVLIMIT} \typeout{{MRVLIMIT: Package for Computing Limits of "Exp-Log" Functions}} {\footnotesize \begin{center} Neil Langmead \\ Konrad-Zuse-Zentrum f\"ur Informationstechnik Berlin (ZIB) \\ Takustra\"se 7 \\ D - 14195 Berlin-Dahlem, Germany \\ \end{center} } \ttindex{MRVLIMIT} %\markboth{CHAPTER \ref{MRVLIMIT}. MRVLIMIT: LIMITS OF ``EXP-LOG'' FUNCTIONS}{} %\thispagestyle{myheadings} Using the LIMITS package to compute the limits of functions containing exponential and logarithmic expressions may raise a problem. For the computation of indefinite forms (such as $0/0$,or $\frac{\infty}{\infty}$) L'Hospital's rule may only be applied a finite number of times in a CAS. In REDUCE it is applied 3 times. This algorithm of Dominik Gruntz of the ETH Z\"urich solves this particular problem, and enables the computation of many more limit calculations in REDUCE. \begin{verbatim} 1: load limits; 2: limit(x^7/e^x,x,infinity); 7 x limit(----,x,infinity) x e 3: load mrvlimit; 4: mrv_limit(x^7/e^x,x,infinity); 0 \end{verbatim} For this example, the MRVLIMIT package is able to compute the correct limit. \\ \ttindex{MRV\_LIMIT} \vspace{.1in} \noindent {\tt MRV\_LIMIT}(EXPRN:{\em algebraic}, VAR:{\em kernel}, LIMPOINT:{\em algebraic}):{\em algebraic} \ttindex{MRV\_LIMIT} \par The result is the limit of EXPRN as VAR approaches LIMPOINT. \vspace{.1in} A switch {\tt TRACELIMIT} is available to inform the user about the computed Taylor expansion, all recursive calls and the return value of the internally called function {\tt MRV}. \\ \\ {\bf Examples}: \\ \begin{verbatim} 5: b:=e^x*(e^(1/x-e^-x)-e^(1/x)); -1 - x x + x - e b:= e *(e - 1) 6: mrv_limit(b,x,infinity); -1 -1 7: ex:= - log(log(log(log(x))) + log(x)) *log(x) *(log(log(x)) - log(log(log(x)) + log(x))); - log(x)*(log(log(x)) - log(log(log(x)) + log(x))) ex:= ----------------------------------------------------- log(log(log(log(x))) + log(x)) 8: off mcd; 9: mrv_limit(ex,x,infinity); 1 \end{verbatim}