Artifact 9dbc53d6e56482fd1db12866eb49f56c7a3edbf29355e5580fd195cbd1b47d0e:
- Executable file
r37/packages/crack/applysym.rlg
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 8574) [annotate] [blame] [check-ins using] [more...]
Wed Jun 16 05:11:54 MET DST 1999 REDUCE 3.7, 15-Apr-1999 ... 1: 1: 2: 2: 2: 2: 2: 2: 2: 2: 2: 3: 3: off echo, dfprint$ ------------------------------------------------------- This file is supposed to provide an automatic test of the program APPLYSYM. On the other hand the application of APPLYSYM is an interactive process, therefore the interested user should inspect the example described in APPLYSYM.TEX which demonstrates the application of symmetries to integrate a 2nd order ODE. Here the program QUASILINPDE for integrating first order quasilinear PDE is demonstrated. The following equation comes up in the elimination of resonant terms in normal forms of singularities of vector fields (C.Herssens, P.Bonckaert, Limburgs Universitair Centrum/Belgium, private communication). ------------------------------------------------------- The quasilinear PDE: 0 = df(w,x)*x + df(w,y)*y + 2*df(w,z)*z - 2*w - x*y. The general solution of the PDE is given through x*y - log(z)*x*y + 2*w y 0 = ff(-----,---------------------,---------) z z sqrt(z) with arbitrary function ff(..). ------------------------------------------------------- Comment: The result means that w is defined implicitly through x*y - log(z)*x*y + 2*w y 0 = ff(-----,---------------------,---------) z z sqrt(z) with an arbitrary function ff of 3 arguments. As the PDE was linear, the arguments of ff are such that we can solve for w: x*y y w = log(z)*x*y/2 + z*f(-----,---------) z sqrt(z) with an arbitrary function f of 2 arguments. ------------------------------------------------------- The following PDEs are taken from E. Kamke, Loesungsmethoden und Loesungen von Differential- gleichungen, Partielle Differentialgleichungen erster Ordnung, B.G. Teubner, Stuttgart (1979). ------------------- equation 1.4 ---------------------- The quasilinear PDE: 0 = df(z,x)*x - y. The general solution of the PDE is given through 0 = ff(log(x)*y - z,y) with arbitrary function ff(..). ------------------- equation 2.5 ---------------------- 2 2 The quasilinear PDE: 0 = df(z,x)*x + df(z,y)*y . The general solution of the PDE is given through - x + y 0 = ff(----------,z) x*y with arbitrary function ff(..). ------------------- equation 2.6 ---------------------- 2 2 The quasilinear PDE: 0 = df(z,x)*x - df(z,x)*y + 2*df(z,y)*x*y. The general solution of the PDE is given through 2 2 - x - y 0 = ff(z,------------) y with arbitrary function ff(..). ------------------- equation 2.7 ---------------------- The quasilinear PDE: 0 = df(z,x)*a0*x - df(z,x)*a1 + df(z,y)*a0*y - df(z,y)*a2. The general solution of the PDE is given through a1*y - a2*x 0 = ff(---------------,z) 2 a0*a1*x - a1 with arbitrary function ff(..). ------------------- equation 2.14 --------------------- 2 2 The quasilinear PDE: 0 = df(z,x)*a + df(z,y)*b - x + y . The general solution of the PDE is given through a*y - b*x 2 3 2 3 2 2 2 3 0 = ff(-----------,a *y - 3*a*b*x*y - 3*b *z + 3*b *x *y - b *y ) b with arbitrary function ff(..). ------------------- equation 2.16 --------------------- The quasilinear PDE: 0 = df(z,x)*x + df(z,y)*y - a*x. The general solution of the PDE is given through - a*x 0 = ff(--------,a*x - z) y with arbitrary function ff(..). ------------------- equation 2.20 --------------------- The quasilinear PDE: 0 = df(z,x) + df(z,y) - a*z. The general solution of the PDE is given through z 0 = ff(------,x - y) a*x e with arbitrary function ff(..). ------------------- equation 2.21 --------------------- The quasilinear PDE: 0 = df(z,x) - df(z,y)*y + z. The general solution of the PDE is given through x x 0 = ff(e *z,e *y) with arbitrary function ff(..). ------------------- equation 2.22 --------------------- The quasilinear PDE: 0 = 2*df(z,x) - df(z,y)*y + z. The general solution of the PDE is given through x/2 x/2 0 = ff(e *z,e *y) with arbitrary function ff(..). ------------------- equation 2.23 --------------------- The quasilinear PDE: 0 = df(z,x)*a + df(z,y)*y - b*z. The general solution of the PDE is given through z y 0 = ff(----------,------) (b*x)/a x/a e e with arbitrary function ff(..). ------------------- equation 2.24 --------------------- The quasilinear PDE: 0 = df(z,x)*x - df(z,y)*x - df(z,y)*y. The general solution of the PDE is given through 2 0 = ff(x + 2*x*y,z) with arbitrary function ff(..). ------------------- equation 2.25 --------------------- The quasilinear PDE: 0 = df(z,x)*x + df(z,y)*y - az. The general solution of the PDE is given through y x 0 = ff(-------,-------) z/az z/az e e with arbitrary function ff(..). ------------------- equation 2.26 --------------------- 2 2 The quasilinear PDE: 0 = df(z,x)*x + df(z,y)*y + x + y - z - 1. The general solution of the PDE is given through 2 2 x x + y + z + 1 0 = ff(---,-----------------) y y with arbitrary function ff(..). ------------------- equation 2.39 --------------------- 2 2 2 The quasilinear PDE: 0 = df(z,x)*a*x + df(z,y)*b*y - c*z . The general solution of the PDE is given through b*y - c*z - a*x + b*y 0 = ff(-----------,--------------) b*y*z b*x*y with arbitrary function ff(..). ------------------- equation 2.40 --------------------- 2 3 4 2 The quasilinear PDE: 0 = df(z,x)*x*y + 2*df(z,y)*y - 2*x + 4*x *y*z 2 2 - 2*y *z . ------------------- equation 3.12 --------------------- The quasilinear PDE: 0 = df(w,x)*x + df(w,y)*a*x + df(w,y)*b*y + df(w,z)*c*x + df(w,z)*d*y + df(w,z)*f*z. The general solution of the PDE is given through f 1 (f + 1)/b 2 f 1 (f + 1)/b 0 = ff(( - x *(----) *b*c*x - x *(----) *b*d*x*y b b x x f 1 (f + 1)/b 2 f 1 (f + 1)/b + x *(----) *c*x + x *(----) *d*x*y - a*d*x + b*c*x b b x x b b f 1 (f + 1)/b - c*x)/(x *b - x ),( - x *(----) *b*f*x*z b x f 1 (f + 1)/b f 1 (f + 1)/b 2 + x *(----) *b*x*z + x *(----) *c*f*x b b x x f 1 (f + 1)/b 2 f 1 (f + 1)/b - x *(----) *c*x + x *(----) *d*f*x*y b b x x f 1 (f + 1)/b f 1 (f + 1)/b 2 - x *(----) *d*x*y + x *(----) *f *x*z b b x x f 1 (f + 1)/b f f - x *(----) *f*x*z + a*d*x - b*c*x + c*x)/(x *b*f - x *b b x f 2 f - x *f + x *f),w) with arbitrary function ff(..). ------------------------ end -------------------------- 4: 4: 4: 4: 4: 4: 4: 4: 4: Time for test: 14390 ms, plus GC time: 740 ms 5: 5: Quitting Wed Jun 16 05:12:15 MET DST 1999