Artifact 9aad7e88f11e46dbee2bf0cfc479cc29a4ccc47decb332e24e68c1dbcde83945:
- File
r34.1/lib/symmetry.tst
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 1430) [annotate] [blame] [check-ins using] [more...]
- File
r35/lib/symmetry.tst
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 1430) [annotate] [blame] [check-ins using]
- Executable file
r36/XMPL/SYMMETRY.TST
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 1430) [annotate] [blame] [check-ins using]
% test symmetry package % implementation of theory of linear representations % for small groups availablegroups(); printgroup(D4); generators(D4); charactertable(D4); characternr(D4,1); characternr(D4,2); characternr(D4,3); characternr(D4,4); characternr(D4,5); irreduciblereptable(D4); irreduciblerepnr(D4,1); irreduciblerepnr(D4,2); irreduciblerepnr(D4,3); irreduciblerepnr(D4,4); irreduciblerepnr(D4,5); rr:=mat((1,0,0,0,0), (0,0,1,0,0), (0,0,0,1,0), (0,0,0,0,1), (0,1,0,0,0)); sp:=mat((1,0,0,0,0), (0,0,1,0,0), (0,1,0,0,0), (0,0,0,0,1), (0,0,0,1,0)); rep:={D4,rD4=rr,sD4=sp}; canonicaldecomposition(rep); character(rep); symmetrybasis(rep,1); symmetrybasis(rep,2); symmetrybasis(rep,3); symmetrybasis(rep,4); symmetrybasis(rep,5); symmetrybasispart(rep,5); allsymmetrybases(rep); % Ritz matrix from Stiefel, Faessler p. 200 m:=mat((eps,a,a,a,a), (a ,d,b,g,b), (a ,b,d,b,g), (a ,g,b,d,b), (a ,b,g,b,d)); diagonalize(m,rep); % eigenvalues are obvious. Eigenvectors may be obtained with % the coordinate transformation matrix given by allsymmetrybases. r1:=mat((0,1,0), (0,0,1), (1,0,0)); repC3:={C3,rC3=r1}; mC3:=mat((a,b,c), (c,a,b), (b,c,a)); diagonalize(mC3,repC3); % note difference between real and complex case on complex; diagonalize(mC3,repC3); off complex; end;