Artifact 9a2338619321510beaeb4f165439cc10c10568fc2802d49c78bfb7dffb56c0ad:
- Executable file
r37/doc/manual2/xcolor.tex
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 1800) [annotate] [blame] [check-ins using] [more...]
- Executable file
r38/doc/manual2/xcolor.tex
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 1800) [annotate] [blame] [check-ins using]
\chapter[XCOLOR: Color factor in gauge theory]% {XCOLOR: Calculation of the color factor in non-abelian gauge field theories} \label{XCOLOR} \typeout{{XCOLOR: Calculation of the color factor in non-abelian gauge field theories}} {\footnotesize \begin{center} A. Kryukov \\ Institute for Nuclear Physics, Moscow State University \\ 119899, Moscow, Russia \\[0.05in] e--mail: kryukov@npi.msu.su \end{center} } \ttindex{XCOLOR} XCOLOR calculates the colour factor in non-abelian gauge field theories. It provides two commands and two operators. \noindent{\tt SUdim} integer\ttindex{SUdim} Sets the order of the SU group. The default value is 3. \noindent{\tt SpTT} expression\ttindex{SpTT} Sets the normalisation coefficient A in the equation $Sp(T_i T_j) = A \Delta(i,j)$. The default value is 1/2. \noindent{\tt QG}(inQuark, outQuark, Gluon)\ttindex{QG} Describes the quark-gluon vertex. The parameters may be any identifiers. The first and second of then must be in- and out- quarks correspondingly. Third one is a gluon. \noindent{\tt G3}(Gluon1, Gluon2, Gluon3)\ttindex{G3} Describes the three-gluon vertex. The parameters may be any identifiers. The order of gluons must be clockwise. In terms of QG and G3 operators one can input a diagram in ``color'' space as a product of these operators. For example \newpage \begin{verbatim} e1 ---->--- / \ / \ | e2 | v1*............*v2 | | \ / \ e3 / ----<--- \end{verbatim} where \verb+--->---+ is a quark and \verb+.......+ is a gluon. The related \REDUCE\ expression is {\tt QG(e3,e1,e2)*QG(e1,e3,e2)}.