Artifact 97ed3a9e68e5403868a08fdf4e47740481145a0b9725498c0946615fe3cd8b59:
- Executable file
r36/src/symmetry.red
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 152636) [annotate] [blame] [check-ins using] [more...]
module symmetry; % % ---------------------------------------------------------- % Symmetry Package % ---------------------------------------------------------- % % Author : Karin Gatermann % Konrad-Zuse-Zentrum fuer % Informationstechnik Berlin % Heilbronner Str. 10 % W-1000 Berlin 31 % Germany % Email: Gatermann@sc.ZIB-Berlin.de % % Version 1.0 9. December 1991 % % Abstract: % --------- % This program is an implementation of the algorithm % for computation of symmetry adapted bases from the % theory of linear representations of finite grous. % Projections for the computation of block diagonal form % of matrices are computed having the symmetry of a group. % % % REDUCE 3.4 is required. % % References: % ----------- % J.-P. Serre, Linear Representations of Finite Groups. % Springer, New York (1977). % E. Stiefel, A. F{\"a}ssler, Gruppentheoretische % Methoden und ihre Anwendung. Teubner, Stuttgart (1979). % (English translation to appear by Birkh\"auser (1992)). % % Keywords: % -------- % linear representations, symmetry adapted bases, % matrix with the symmetry of a group, % block diagonalization % % symmetry.red % definition of available algebraic operators % To build a fast loading version of this package, the following % sequence of commands should be used: create!-package('(symmetry symdata1 symdata2),'(contrib symmetry)); load!-package 'symaux; endmodule; module symdata1; % Data for symmetry package, part 1. % Author: Karin Gatermann <Gatermann@sc.ZIB-Berlin.de>. set!*elems!*group('z2,'(id sz2))$ set!*generators('z2,'(sz2))$ set!*relations('z2,'(((sz2 sz2) (id))))$ set!*grouptable('z2,'((grouptable id sz2) (id id sz2) (sz2 sz2 id)))$ set!*inverse('z2,'((id sz2) (id sz2)))$ set!*elemasgen('z2,'(((sz2) (sz2))))$ set!*group('z2,'((id) (sz2)))$ set!*representation('z2,'((id (((1 . 1)))) (sz2 (((1 . 1))))),'complex)$ set!*representation('z2, '((id (((1 . 1)))) (sz2 (((-1 . 1))))),'complex)$ set!*representation('z2, '(realtype (id (((1 . 1)))) (sz2 (((1 . 1))))),'real)$ set!*representation('z2, '(realtype (id (((1 . 1)))) (sz2 (((-1 . 1))))),'real)$ set!*available 'z2$ set!*elems!*group('k4,'(id s1k4 s2k4 rk4))$ set!*generators('k4,'(s1k4 s2k4))$ set!*relations('k4, '(((s1k4 s1k4) (id)) ((s2k4 s2k4) (id)) ((s1k4 s2k4) (s2k4 s1k4))))$ set!*grouptable('k4, '((grouptable id s1k4 s2k4 rk4) (id id s1k4 s2k4 rk4) (s1k4 s1k4 id rk4 s2k4) (s2k4 s2k4 rk4 id s1k4) (rk4 rk4 s2k4 s1k4 id)))$ set!*inverse('k4,'((id s1k4 s2k4 rk4) (id s1k4 s2k4 rk4)))$ set!*elemasgen('k4, '(((s1k4) (s1k4)) ((s2k4) (s2k4)) ((rk4) (s1k4 s2k4))))$ set!*group('k4,'((id) (s1k4) (s2k4) (rk4)))$ set!*representation('k4, '((id (((1 . 1)))) (s1k4 (((1 . 1)))) (s2k4 (((1 . 1)))) (rk4 (((1 . 1))))),'complex)$ set!*representation('k4, '((id (((1 . 1)))) (s1k4 (((-1 . 1)))) (s2k4 (((1 . 1)))) (rk4 (((-1 . 1))))),'complex)$ set!*representation('k4, '((id (((1 . 1)))) (s1k4 (((1 . 1)))) (s2k4 (((-1 . 1)))) (rk4 (((-1 . 1))))),'complex)$ set!*representation('k4, '((id (((1 . 1)))) (s1k4 (((-1 . 1)))) (s2k4 (((-1 . 1)))) (rk4 (((1 . 1))))),'complex)$ set!*representation('k4, '(realtype (id (((1 . 1)))) (s1k4 (((1 . 1)))) (s2k4 (((1 . 1)))) (rk4 (((1 . 1))))),'real)$ set!*representation('k4, '(realtype (id (((1 . 1)))) (s1k4 (((-1 . 1)))) (s2k4 (((1 . 1)))) (rk4 (((-1 . 1))))),'real)$ set!*representation('k4, '(realtype (id (((1 . 1)))) (s1k4 (((1 . 1)))) (s2k4 (((-1 . 1)))) (rk4 (((-1 . 1))))),'real)$ set!*representation('k4, '(realtype (id (((1 . 1)))) (s1k4 (((-1 . 1)))) (s2k4 (((-1 . 1)))) (rk4 (((1 . 1))))),'real)$ set!*available 'k4$ set!*elems!*group('d3,'(id rd3 rot2d3 sd3 srd3 sr2d3))$ set!*generators('d3,'(rd3 sd3))$ set!*relations('d3, '(((sd3 sd3) (id)) ((rd3 rd3 rd3) (id)) ((sd3 rd3 sd3) (rd3 rd3))))$ set!*grouptable('d3, '((grouptable id rd3 rot2d3 sd3 srd3 sr2d3) (id id rd3 rot2d3 sd3 srd3 sr2d3) (rd3 rd3 rot2d3 id sr2d3 sd3 srd3) (rot2d3 rot2d3 id rd3 srd3 sr2d3 sd3) (sd3 sd3 srd3 sr2d3 id rd3 rot2d3) (srd3 srd3 sr2d3 sd3 rot2d3 id rd3) (sr2d3 sr2d3 sd3 srd3 rd3 rot2d3 id)))$ set!*inverse('d3, '((id rd3 rot2d3 sd3 srd3 sr2d3) (id rot2d3 rd3 sd3 srd3 sr2d3)))$ set!*elemasgen('d3, '(((rd3) (rd3)) ((rot2d3) (rd3 rd3)) ((sd3) (sd3)) ((srd3) (sd3 rd3)) ((sr2d3) (sd3 rd3 rd3))))$ set!*group('d3,'((id) (rd3 rot2d3) (sr2d3 sd3 srd3)))$ set!*representation('d3, '((id (((1 . 1)))) (rd3 (((1 . 1)))) (rot2d3 (((1 . 1)))) (sd3 (((1 . 1)))) (srd3 (((1 . 1)))) (sr2d3 (((1 . 1))))),'complex)$ set!*representation('d3, '((id (((1 . 1)))) (rd3 (((1 . 1)))) (rot2d3 (((1 . 1)))) (sd3 (((-1 . 1)))) (srd3 (((-1 . 1)))) (sr2d3 (((-1 . 1))))),'complex)$ set!*representation('d3, '((id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1)))) (rd3 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (-1 . 2)))) (rot2d3 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2)))) (sd3 (((1 . 1) (nil . 1)) ((nil . 1) (-1 . 1)))) (srd3 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (1 . 2)))) (sr2d3 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (1 . 2))))),'complex)$ set!*representation('d3, '(realtype (id (((1 . 1)))) (rd3 (((1 . 1)))) (rot2d3 (((1 . 1)))) (sd3 (((1 . 1)))) (srd3 (((1 . 1)))) (sr2d3 (((1 . 1))))),'real)$ set!*representation('d3, '(realtype (id (((1 . 1)))) (rd3 (((1 . 1)))) (rot2d3 (((1 . 1)))) (sd3 (((-1 . 1)))) (srd3 (((-1 . 1)))) (sr2d3 (((-1 . 1))))),'real)$ set!*representation('d3, '(realtype (id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1)))) (rd3 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (-1 . 2)))) (rot2d3 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2)))) (sd3 (((1 . 1) (nil . 1)) ((nil . 1) (-1 . 1)))) (srd3 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (1 . 2)))) (sr2d3 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (1 . 2))))),'real)$ set!*available 'd3$ set!*elems!*group('d4,'(id rd4 rot2d4 rot3d4 sd4 srd4 sr2d4 sr3d4))$ set!*generators('d4,'(rd4 sd4))$ set!*relations('d4, '(((sd4 sd4) (id)) ((rd4 rd4 rd4 rd4) (id)) ((sd4 rd4 sd4) (rd4 rd4 rd4))))$ set!*grouptable('d4, '((grouptable id rd4 rot2d4 rot3d4 sd4 srd4 sr2d4 sr3d4) (id id rd4 rot2d4 rot3d4 sd4 srd4 sr2d4 sr3d4) (rd4 rd4 rot2d4 rot3d4 id sr3d4 sd4 srd4 sr2d4) (rot2d4 rot2d4 rot3d4 id rd4 sr2d4 sr3d4 sd4 srd4) (rot3d4 rot3d4 id rd4 rot2d4 srd4 sr2d4 sr3d4 sd4) (sd4 sd4 srd4 sr2d4 sr3d4 id rd4 rot2d4 rot3d4) (srd4 srd4 sr2d4 sr3d4 sd4 rot3d4 id rd4 rot2d4) (sr2d4 sr2d4 sr3d4 sd4 srd4 rot2d4 rot3d4 id rd4) (sr3d4 sr3d4 sd4 srd4 sr2d4 rd4 rot2d4 rot3d4 id)))$ set!*inverse('d4, '((id rd4 rot2d4 rot3d4 sd4 srd4 sr2d4 sr3d4) (id rot3d4 rot2d4 rd4 sd4 srd4 sr2d4 sr3d4)))$ set!*elemasgen('d4, '(((rd4) (rd4)) ((rot2d4) (rd4 rd4)) ((rot3d4) (rd4 rd4 rd4)) ((sd4) (sd4)) ((srd4) (sd4 rd4)) ((sr2d4) (sd4 rd4 rd4)) ((sr3d4) (sd4 rd4 rd4 rd4))))$ set!*group('d4,'((id) (rd4 rot3d4) (rot2d4) (sd4 sr2d4) (sr3d4 srd4)))$ set!*representation('d4, '((id (((1 . 1)))) (rd4 (((1 . 1)))) (rot2d4 (((1 . 1)))) (rot3d4 (((1 . 1)))) (sd4 (((1 . 1)))) (srd4 (((1 . 1)))) (sr2d4 (((1 . 1)))) (sr3d4 (((1 . 1))))),'complex)$ set!*representation('d4, '((id (((1 . 1)))) (rd4 (((1 . 1)))) (rot2d4 (((1 . 1)))) (rot3d4 (((1 . 1)))) (sd4 (((-1 . 1)))) (srd4 (((-1 . 1)))) (sr2d4 (((-1 . 1)))) (sr3d4 (((-1 . 1))))),'complex)$ set!*representation('d4, '((id (((1 . 1)))) (rd4 (((-1 . 1)))) (rot2d4 (((1 . 1)))) (rot3d4 (((-1 . 1)))) (sd4 (((1 . 1)))) (srd4 (((-1 . 1)))) (sr2d4 (((1 . 1)))) (sr3d4 (((-1 . 1))))),'complex)$ set!*representation('d4, '((id (((1 . 1)))) (rd4 (((-1 . 1)))) (rot2d4 (((1 . 1)))) (rot3d4 (((-1 . 1)))) (sd4 (((-1 . 1)))) (srd4 (((1 . 1)))) (sr2d4 (((-1 . 1)))) (sr3d4 (((1 . 1))))),'complex)$ set!*representation('d4, '((id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1)))) (rd4 (((nil . 1) (1 . 1)) ((-1 . 1) (nil . 1)))) (rot2d4 (((-1 . 1) (nil . 1)) ((nil . 1) (-1 . 1)))) (rot3d4 (((nil . 1) (-1 . 1)) ((1 . 1) (nil . 1)))) (sd4 (((1 . 1) (nil . 1)) ((nil . 1) (-1 . 1)))) (srd4 (((nil . 1) (1 . 1)) ((1 . 1) (nil . 1)))) (sr2d4 (((-1 . 1) (nil . 1)) ((nil . 1) (1 . 1)))) (sr3d4 (((nil . 1) (-1 . 1)) ((-1 . 1) (nil . 1))))), 'complex)$ set!*representation('d4, '(realtype (id (((1 . 1)))) (rd4 (((1 . 1)))) (rot2d4 (((1 . 1)))) (rot3d4 (((1 . 1)))) (sd4 (((1 . 1)))) (srd4 (((1 . 1)))) (sr2d4 (((1 . 1)))) (sr3d4 (((1 . 1))))),'real)$ set!*representation('d4, '(realtype (id (((1 . 1)))) (rd4 (((1 . 1)))) (rot2d4 (((1 . 1)))) (rot3d4 (((1 . 1)))) (sd4 (((-1 . 1)))) (srd4 (((-1 . 1)))) (sr2d4 (((-1 . 1)))) (sr3d4 (((-1 . 1))))),'real)$ set!*representation('d4, '(realtype (id (((1 . 1)))) (rd4 (((-1 . 1)))) (rot2d4 (((1 . 1)))) (rot3d4 (((-1 . 1)))) (sd4 (((1 . 1)))) (srd4 (((-1 . 1)))) (sr2d4 (((1 . 1)))) (sr3d4 (((-1 . 1))))),'real)$ set!*representation('d4, '(realtype (id (((1 . 1)))) (rd4 (((-1 . 1)))) (rot2d4 (((1 . 1)))) (rot3d4 (((-1 . 1)))) (sd4 (((-1 . 1)))) (srd4 (((1 . 1)))) (sr2d4 (((-1 . 1)))) (sr3d4 (((1 . 1))))),'real)$ set!*representation('d4, '(realtype (id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1)))) (rd4 (((nil . 1) (1 . 1)) ((-1 . 1) (nil . 1)))) (rot2d4 (((-1 . 1) (nil . 1)) ((nil . 1) (-1 . 1)))) (rot3d4 (((nil . 1) (-1 . 1)) ((1 . 1) (nil . 1)))) (sd4 (((1 . 1) (nil . 1)) ((nil . 1) (-1 . 1)))) (srd4 (((nil . 1) (1 . 1)) ((1 . 1) (nil . 1)))) (sr2d4 (((-1 . 1) (nil . 1)) ((nil . 1) (1 . 1)))) (sr3d4 (((nil . 1) (-1 . 1)) ((-1 . 1) (nil . 1))))), 'real)$ set!*available 'd4$ set!*elems!*group('d5, '(id rd5 r2d5 r3d5 r4d5 sd5 srd5 sr2d5 sr3d5 sr4d5))$ set!*generators('d5,'(rd5 sd5))$ set!*relations('d5, '(((sd5 sd5) (id)) ((rd5 rd5 rd5 rd5 rd5) (id)) ((sd5 rd5 sd5) (rd5 rd5 rd5 rd5))))$ set!*grouptable('d5, '((grouptable id rd5 r2d5 r3d5 r4d5 sd5 srd5 sr2d5 sr3d5 sr4d5) (id id rd5 r2d5 r3d5 r4d5 sd5 srd5 sr2d5 sr3d5 sr4d5) (rd5 rd5 r2d5 r3d5 r4d5 id sr4d5 sd5 srd5 sr2d5 sr3d5) (r2d5 r2d5 r3d5 r4d5 id rd5 sr3d5 sr4d5 sd5 srd5 sr2d5) (r3d5 r3d5 r4d5 id rd5 r2d5 sr2d5 sr3d5 sr4d5 sd5 srd5) (r4d5 r4d5 id rd5 r2d5 r3d5 srd5 sr2d5 sr3d5 sr4d5 sd5) (sd5 sd5 srd5 sr2d5 sr3d5 sr4d5 id rd5 r2d5 r3d5 r4d5) (srd5 srd5 sr2d5 sr3d5 sr4d5 sd5 r4d5 id rd5 r2d5 r3d5) (sr2d5 sr2d5 sr3d5 sr4d5 sd5 srd5 r3d5 r4d5 id rd5 r2d5) (sr3d5 sr3d5 sr4d5 sd5 srd5 sr2d5 r2d5 r3d5 r4d5 id rd5) (sr4d5 sr4d5 sd5 srd5 sr2d5 sr3d5 rd5 r2d5 r3d5 r4d5 id)))$ set!*inverse('d5, '((id rd5 r2d5 r3d5 r4d5 sd5 srd5 sr2d5 sr3d5 sr4d5) (id r4d5 r3d5 r2d5 rd5 sd5 srd5 sr2d5 sr3d5 sr4d5)))$ set!*elemasgen('d5, '(((rd5) (rd5)) ((r2d5) (rd5 rd5)) ((r3d5) (rd5 rd5 rd5)) ((r4d5) (rd5 rd5 rd5 rd5)) ((sd5) (sd5)) ((srd5) (sd5 rd5)) ((sr2d5) (sd5 rd5 rd5)) ((sr3d5) (sd5 rd5 rd5 rd5)) ((sr4d5) (sd5 rd5 rd5 rd5 rd5))))$ set!*group('d5, '((id) (rd5 r4d5) (r2d5 r3d5) (srd5 sr2d5 sd5 sr4d5 sr3d5)))$ set!*representation('d5, '((id (((1 . 1)))) (rd5 (((1 . 1)))) (r2d5 (((1 . 1)))) (r3d5 (((1 . 1)))) (r4d5 (((1 . 1)))) (sd5 (((1 . 1)))) (srd5 (((1 . 1)))) (sr2d5 (((1 . 1)))) (sr3d5 (((1 . 1)))) (sr4d5 (((1 . 1))))),'complex)$ set!*representation('d5, '((id (((1 . 1)))) (rd5 (((1 . 1)))) (r2d5 (((1 . 1)))) (r3d5 (((1 . 1)))) (r4d5 (((1 . 1)))) (sd5 (((-1 . 1)))) (srd5 (((-1 . 1)))) (sr2d5 (((-1 . 1)))) (sr3d5 (((-1 . 1)))) (sr4d5 (((-1 . 1))))),'complex)$ set!*representation('d5, '((id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1)))) (rd5 (((((((cos (quotient (times 2 pi) 5)) . 1) . 1)) . 1) (((((sin (quotient (times 2 pi) 5)) . 1) . -1)) . 1)) ((((((sin (quotient (times 2 pi) 5)) . 1) . 1)) . 1) (((((cos (quotient (times 2 pi) 5)) . 1) . 1)) . 1)))) (r2d5 (((((((sin (quotient (times 2 pi) 5)) . 2) . -1) (((cos (quotient (times 2 pi) 5)) . 2) . 1)) . 1) (((((sin (quotient (times 2 pi) 5)) . 1) (((cos (quotient (times 2 pi) 5)) . 1) . -2))) . 1)) ((((((sin (quotient (times 2 pi) 5)) . 1) (((cos (quotient (times 2 pi) 5)) . 1) . 2))) . 1) (((((sin (quotient (times 2 pi) 5)) . 2) . -1) (((cos (quotient (times 2 pi) 5)) . 2) . 1)) . 1)))) (r3d5 (((((((sin (quotient (times 2 pi) 5)) . 2) (((cos (quotient (times 2 pi) 5)) . 1) . -3)) (((cos (quotient (times 2 pi) 5)) . 3) . 1)) . 1) (((((sin (quotient (times 2 pi) 5)) . 3) . 1) (((sin (quotient (times 2 pi) 5)) . 1) (((cos (quotient (times 2 pi) 5)) . 2) . -3))) . 1)) ((((((sin (quotient (times 2 pi) 5)) . 3) . -1) (((sin (quotient (times 2 pi) 5)) . 1) (((cos (quotient (times 2 pi) 5)) . 2) . 3))) . 1) (((((sin (quotient (times 2 pi) 5)) . 2) (((cos (quotient (times 2 pi) 5)) . 1) . -3)) (((cos (quotient (times 2 pi) 5)) . 3) . 1)) . 1)))) (r4d5 (((((((sin (quotient (times 2 pi) 5)) . 4) . 1) (((sin (quotient (times 2 pi) 5)) . 2) (((cos (quotient (times 2 pi) 5)) . 2) . -6)) (((cos (quotient (times 2 pi) 5)) . 4) . 1)) . 1) (((((sin (quotient (times 2 pi) 5)) . 3) (((cos (quotient (times 2 pi) 5)) . 1) . 4)) (((sin (quotient (times 2 pi) 5)) . 1) (((cos (quotient (times 2 pi) 5)) . 3) . -4))) . 1)) ((((((sin (quotient (times 2 pi) 5)) . 3) (((cos (quotient (times 2 pi) 5)) . 1) . -4)) (((sin (quotient (times 2 pi) 5)) . 1) (((cos (quotient (times 2 pi) 5)) . 3) . 4))) . 1) (((((sin (quotient (times 2 pi) 5)) . 4) . 1) (((sin (quotient (times 2 pi) 5)) . 2) (((cos (quotient (times 2 pi) 5)) . 2) . -6)) (((cos (quotient (times 2 pi) 5)) . 4) . 1)) . 1)))) (sd5 (((1 . 1) (nil . 1)) ((nil . 1) (-1 . 1)))) (srd5 (((((((cos (quotient (times 2 pi) 5)) . 1) . 1)) . 1) (((((sin (quotient (times 2 pi) 5)) . 1) . -1)) . 1)) ((((((sin (quotient (times 2 pi) 5)) . 1) . -1)) . 1) (((((cos (quotient (times 2 pi) 5)) . 1) . -1)) . 1)))) (sr2d5 (((((((sin (quotient (times 2 pi) 5)) . 2) . -1) (((cos (quotient (times 2 pi) 5)) . 2) . 1)) . 1) (((((sin (quotient (times 2 pi) 5)) . 1) (((cos (quotient (times 2 pi) 5)) . 1) . -2))) . 1)) ((((((sin (quotient (times 2 pi) 5)) . 1) (((cos (quotient (times 2 pi) 5)) . 1) . -2))) . 1) (((((sin (quotient (times 2 pi) 5)) . 2) . 1) (((cos (quotient (times 2 pi) 5)) . 2) . -1)) . 1)))) (sr3d5 (((((((sin (quotient (times 2 pi) 5)) . 2) (((cos (quotient (times 2 pi) 5)) . 1) . -3)) (((cos (quotient (times 2 pi) 5)) . 3) . 1)) . 1) (((((sin (quotient (times 2 pi) 5)) . 3) . 1) (((sin (quotient (times 2 pi) 5)) . 1) (((cos (quotient (times 2 pi) 5)) . 2) . -3))) . 1)) ((((((sin (quotient (times 2 pi) 5)) . 3) . 1) (((sin (quotient (times 2 pi) 5)) . 1) (((cos (quotient (times 2 pi) 5)) . 2) . -3))) . 1) (((((sin (quotient (times 2 pi) 5)) . 2) (((cos (quotient (times 2 pi) 5)) . 1) . 3)) (((cos (quotient (times 2 pi) 5)) . 3) . -1)) . 1)))) (sr4d5 (((((((sin (quotient (times 2 pi) 5)) . 4) . 1) (((sin (quotient (times 2 pi) 5)) . 2) (((cos (quotient (times 2 pi) 5)) . 2) . -6)) (((cos (quotient (times 2 pi) 5)) . 4) . 1)) . 1) (((((sin (quotient (times 2 pi) 5)) . 3) (((cos (quotient (times 2 pi) 5)) . 1) . 4)) (((sin (quotient (times 2 pi) 5)) . 1) (((cos (quotient (times 2 pi) 5)) . 3) . -4))) . 1)) ((((((sin (quotient (times 2 pi) 5)) . 3) (((cos (quotient (times 2 pi) 5)) . 1) . 4)) (((sin (quotient (times 2 pi) 5)) . 1) (((cos (quotient (times 2 pi) 5)) . 3) . -4))) . 1) (((((sin (quotient (times 2 pi) 5)) . 4) . -1) (((sin (quotient (times 2 pi) 5)) . 2) (((cos (quotient (times 2 pi) 5)) . 2) . 6)) (((cos (quotient (times 2 pi) 5)) . 4) . -1)) . 1))))),'complex)$ set!*representation('d5, '((id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1)))) (rd5 (((((((cos (quotient (times 4 pi) 5)) . 1) . 1)) . 1) (((((sin (quotient (times 4 pi) 5)) . 1) . -1)) . 1)) ((((((sin (quotient (times 4 pi) 5)) . 1) . 1)) . 1) (((((cos (quotient (times 4 pi) 5)) . 1) . 1)) . 1)))) (r2d5 (((((((sin (quotient (times 4 pi) 5)) . 2) . -1) (((cos (quotient (times 4 pi) 5)) . 2) . 1)) . 1) (((((sin (quotient (times 4 pi) 5)) . 1) (((cos (quotient (times 4 pi) 5)) . 1) . -2))) . 1)) ((((((sin (quotient (times 4 pi) 5)) . 1) (((cos (quotient (times 4 pi) 5)) . 1) . 2))) . 1) (((((sin (quotient (times 4 pi) 5)) . 2) . -1) (((cos (quotient (times 4 pi) 5)) . 2) . 1)) . 1)))) (r3d5 (((((((sin (quotient (times 4 pi) 5)) . 2) (((cos (quotient (times 4 pi) 5)) . 1) . -3)) (((cos (quotient (times 4 pi) 5)) . 3) . 1)) . 1) (((((sin (quotient (times 4 pi) 5)) . 3) . 1) (((sin (quotient (times 4 pi) 5)) . 1) (((cos (quotient (times 4 pi) 5)) . 2) . -3))) . 1)) ((((((sin (quotient (times 4 pi) 5)) . 3) . -1) (((sin (quotient (times 4 pi) 5)) . 1) (((cos (quotient (times 4 pi) 5)) . 2) . 3))) . 1) (((((sin (quotient (times 4 pi) 5)) . 2) (((cos (quotient (times 4 pi) 5)) . 1) . -3)) (((cos (quotient (times 4 pi) 5)) . 3) . 1)) . 1)))) (r4d5 (((((((sin (quotient (times 4 pi) 5)) . 4) . 1) (((sin (quotient (times 4 pi) 5)) . 2) (((cos (quotient (times 4 pi) 5)) . 2) . -6)) (((cos (quotient (times 4 pi) 5)) . 4) . 1)) . 1) (((((sin (quotient (times 4 pi) 5)) . 3) (((cos (quotient (times 4 pi) 5)) . 1) . 4)) (((sin (quotient (times 4 pi) 5)) . 1) (((cos (quotient (times 4 pi) 5)) . 3) . -4))) . 1)) ((((((sin (quotient (times 4 pi) 5)) . 3) (((cos (quotient (times 4 pi) 5)) . 1) . -4)) (((sin (quotient (times 4 pi) 5)) . 1) (((cos (quotient (times 4 pi) 5)) . 3) . 4))) . 1) (((((sin (quotient (times 4 pi) 5)) . 4) . 1) (((sin (quotient (times 4 pi) 5)) . 2) (((cos (quotient (times 4 pi) 5)) . 2) . -6)) (((cos (quotient (times 4 pi) 5)) . 4) . 1)) . 1)))) (sd5 (((1 . 1) (nil . 1)) ((nil . 1) (-1 . 1)))) (srd5 (((((((cos (quotient (times 4 pi) 5)) . 1) . 1)) . 1) (((((sin (quotient (times 4 pi) 5)) . 1) . -1)) . 1)) ((((((sin (quotient (times 4 pi) 5)) . 1) . -1)) . 1) (((((cos (quotient (times 4 pi) 5)) . 1) . -1)) . 1)))) (sr2d5 (((((((sin (quotient (times 4 pi) 5)) . 2) . -1) (((cos (quotient (times 4 pi) 5)) . 2) . 1)) . 1) (((((sin (quotient (times 4 pi) 5)) . 1) (((cos (quotient (times 4 pi) 5)) . 1) . -2))) . 1)) ((((((sin (quotient (times 4 pi) 5)) . 1) (((cos (quotient (times 4 pi) 5)) . 1) . -2))) . 1) (((((sin (quotient (times 4 pi) 5)) . 2) . 1) (((cos (quotient (times 4 pi) 5)) . 2) . -1)) . 1)))) (sr3d5 (((((((sin (quotient (times 4 pi) 5)) . 2) (((cos (quotient (times 4 pi) 5)) . 1) . -3)) (((cos (quotient (times 4 pi) 5)) . 3) . 1)) . 1) (((((sin (quotient (times 4 pi) 5)) . 3) . 1) (((sin (quotient (times 4 pi) 5)) . 1) (((cos (quotient (times 4 pi) 5)) . 2) . -3))) . 1)) ((((((sin (quotient (times 4 pi) 5)) . 3) . 1) (((sin (quotient (times 4 pi) 5)) . 1) (((cos (quotient (times 4 pi) 5)) . 2) . -3))) . 1) (((((sin (quotient (times 4 pi) 5)) . 2) (((cos (quotient (times 4 pi) 5)) . 1) . 3)) (((cos (quotient (times 4 pi) 5)) . 3) . -1)) . 1)))) (sr4d5 (((((((sin (quotient (times 4 pi) 5)) . 4) . 1) (((sin (quotient (times 4 pi) 5)) . 2) (((cos (quotient (times 4 pi) 5)) . 2) . -6)) (((cos (quotient (times 4 pi) 5)) . 4) . 1)) . 1) (((((sin (quotient (times 4 pi) 5)) . 3) (((cos (quotient (times 4 pi) 5)) . 1) . 4)) (((sin (quotient (times 4 pi) 5)) . 1) (((cos (quotient (times 4 pi) 5)) . 3) . -4))) . 1)) ((((((sin (quotient (times 4 pi) 5)) . 3) (((cos (quotient (times 4 pi) 5)) . 1) . 4)) (((sin (quotient (times 4 pi) 5)) . 1) (((cos (quotient (times 4 pi) 5)) . 3) . -4))) . 1) (((((sin (quotient (times 4 pi) 5)) . 4) . -1) (((sin (quotient (times 4 pi) 5)) . 2) (((cos (quotient (times 4 pi) 5)) . 2) . 6)) (((cos (quotient (times 4 pi) 5)) . 4) . -1)) . 1))))),'complex)$ set!*representation('d5, '(realtype (id (((1 . 1)))) (rd5 (((1 . 1)))) (r2d5 (((1 . 1)))) (r3d5 (((1 . 1)))) (r4d5 (((1 . 1)))) (sd5 (((1 . 1)))) (srd5 (((1 . 1)))) (sr2d5 (((1 . 1)))) (sr3d5 (((1 . 1)))) (sr4d5 (((1 . 1))))),'real)$ set!*representation('d5, '(realtype (id (((1 . 1)))) (rd5 (((1 . 1)))) (r2d5 (((1 . 1)))) (r3d5 (((1 . 1)))) (r4d5 (((1 . 1)))) (sd5 (((-1 . 1)))) (srd5 (((-1 . 1)))) (sr2d5 (((-1 . 1)))) (sr3d5 (((-1 . 1)))) (sr4d5 (((-1 . 1))))),'real)$ set!*representation('d5, '(realtype (id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1)))) (rd5 (((((((cos (quotient (times 2 pi) 5)) . 1) . 1)) . 1) (((((sin (quotient (times 2 pi) 5)) . 1) . -1)) . 1)) ((((((sin (quotient (times 2 pi) 5)) . 1) . 1)) . 1) (((((cos (quotient (times 2 pi) 5)) . 1) . 1)) . 1)))) (r2d5 (((((((sin (quotient (times 2 pi) 5)) . 2) . -1) (((cos (quotient (times 2 pi) 5)) . 2) . 1)) . 1) (((((sin (quotient (times 2 pi) 5)) . 1) (((cos (quotient (times 2 pi) 5)) . 1) . -2))) . 1)) ((((((sin (quotient (times 2 pi) 5)) . 1) (((cos (quotient (times 2 pi) 5)) . 1) . 2))) . 1) (((((sin (quotient (times 2 pi) 5)) . 2) . -1) (((cos (quotient (times 2 pi) 5)) . 2) . 1)) . 1)))) (r3d5 (((((((sin (quotient (times 2 pi) 5)) . 2) (((cos (quotient (times 2 pi) 5)) . 1) . -3)) (((cos (quotient (times 2 pi) 5)) . 3) . 1)) . 1) (((((sin (quotient (times 2 pi) 5)) . 3) . 1) (((sin (quotient (times 2 pi) 5)) . 1) (((cos (quotient (times 2 pi) 5)) . 2) . -3))) . 1)) ((((((sin (quotient (times 2 pi) 5)) . 3) . -1) (((sin (quotient (times 2 pi) 5)) . 1) (((cos (quotient (times 2 pi) 5)) . 2) . 3))) . 1) (((((sin (quotient (times 2 pi) 5)) . 2) (((cos (quotient (times 2 pi) 5)) . 1) . -3)) (((cos (quotient (times 2 pi) 5)) . 3) . 1)) . 1)))) (r4d5 (((((((sin (quotient (times 2 pi) 5)) . 4) . 1) (((sin (quotient (times 2 pi) 5)) . 2) (((cos (quotient (times 2 pi) 5)) . 2) . -6)) (((cos (quotient (times 2 pi) 5)) . 4) . 1)) . 1) (((((sin (quotient (times 2 pi) 5)) . 3) (((cos (quotient (times 2 pi) 5)) . 1) . 4)) (((sin (quotient (times 2 pi) 5)) . 1) (((cos (quotient (times 2 pi) 5)) . 3) . -4))) . 1)) ((((((sin (quotient (times 2 pi) 5)) . 3) (((cos (quotient (times 2 pi) 5)) . 1) . -4)) (((sin (quotient (times 2 pi) 5)) . 1) (((cos (quotient (times 2 pi) 5)) . 3) . 4))) . 1) (((((sin (quotient (times 2 pi) 5)) . 4) . 1) (((sin (quotient (times 2 pi) 5)) . 2) (((cos (quotient (times 2 pi) 5)) . 2) . -6)) (((cos (quotient (times 2 pi) 5)) . 4) . 1)) . 1)))) (sd5 (((1 . 1) (nil . 1)) ((nil . 1) (-1 . 1)))) (srd5 (((((((cos (quotient (times 2 pi) 5)) . 1) . 1)) . 1) (((((sin (quotient (times 2 pi) 5)) . 1) . -1)) . 1)) ((((((sin (quotient (times 2 pi) 5)) . 1) . -1)) . 1) (((((cos (quotient (times 2 pi) 5)) . 1) . -1)) . 1)))) (sr2d5 (((((((sin (quotient (times 2 pi) 5)) . 2) . -1) (((cos (quotient (times 2 pi) 5)) . 2) . 1)) . 1) (((((sin (quotient (times 2 pi) 5)) . 1) (((cos (quotient (times 2 pi) 5)) . 1) . -2))) . 1)) ((((((sin (quotient (times 2 pi) 5)) . 1) (((cos (quotient (times 2 pi) 5)) . 1) . -2))) . 1) (((((sin (quotient (times 2 pi) 5)) . 2) . 1) (((cos (quotient (times 2 pi) 5)) . 2) . -1)) . 1)))) (sr3d5 (((((((sin (quotient (times 2 pi) 5)) . 2) (((cos (quotient (times 2 pi) 5)) . 1) . -3)) (((cos (quotient (times 2 pi) 5)) . 3) . 1)) . 1) (((((sin (quotient (times 2 pi) 5)) . 3) . 1) (((sin (quotient (times 2 pi) 5)) . 1) (((cos (quotient (times 2 pi) 5)) . 2) . -3))) . 1)) ((((((sin (quotient (times 2 pi) 5)) . 3) . 1) (((sin (quotient (times 2 pi) 5)) . 1) (((cos (quotient (times 2 pi) 5)) . 2) . -3))) . 1) (((((sin (quotient (times 2 pi) 5)) . 2) (((cos (quotient (times 2 pi) 5)) . 1) . 3)) (((cos (quotient (times 2 pi) 5)) . 3) . -1)) . 1)))) (sr4d5 (((((((sin (quotient (times 2 pi) 5)) . 4) . 1) (((sin (quotient (times 2 pi) 5)) . 2) (((cos (quotient (times 2 pi) 5)) . 2) . -6)) (((cos (quotient (times 2 pi) 5)) . 4) . 1)) . 1) (((((sin (quotient (times 2 pi) 5)) . 3) (((cos (quotient (times 2 pi) 5)) . 1) . 4)) (((sin (quotient (times 2 pi) 5)) . 1) (((cos (quotient (times 2 pi) 5)) . 3) . -4))) . 1)) ((((((sin (quotient (times 2 pi) 5)) . 3) (((cos (quotient (times 2 pi) 5)) . 1) . 4)) (((sin (quotient (times 2 pi) 5)) . 1) (((cos (quotient (times 2 pi) 5)) . 3) . -4))) . 1) (((((sin (quotient (times 2 pi) 5)) . 4) . -1) (((sin (quotient (times 2 pi) 5)) . 2) (((cos (quotient (times 2 pi) 5)) . 2) . 6)) (((cos (quotient (times 2 pi) 5)) . 4) . -1)) . 1))))),'real)$ set!*representation('d5, '(realtype (id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1)))) (rd5 (((((((cos (quotient (times 4 pi) 5)) . 1) . 1)) . 1) (((((sin (quotient (times 4 pi) 5)) . 1) . -1)) . 1)) ((((((sin (quotient (times 4 pi) 5)) . 1) . 1)) . 1) (((((cos (quotient (times 4 pi) 5)) . 1) . 1)) . 1)))) (r2d5 (((((((sin (quotient (times 4 pi) 5)) . 2) . -1) (((cos (quotient (times 4 pi) 5)) . 2) . 1)) . 1) (((((sin (quotient (times 4 pi) 5)) . 1) (((cos (quotient (times 4 pi) 5)) . 1) . -2))) . 1)) ((((((sin (quotient (times 4 pi) 5)) . 1) (((cos (quotient (times 4 pi) 5)) . 1) . 2))) . 1) (((((sin (quotient (times 4 pi) 5)) . 2) . -1) (((cos (quotient (times 4 pi) 5)) . 2) . 1)) . 1)))) (r3d5 (((((((sin (quotient (times 4 pi) 5)) . 2) (((cos (quotient (times 4 pi) 5)) . 1) . -3)) (((cos (quotient (times 4 pi) 5)) . 3) . 1)) . 1) (((((sin (quotient (times 4 pi) 5)) . 3) . 1) (((sin (quotient (times 4 pi) 5)) . 1) (((cos (quotient (times 4 pi) 5)) . 2) . -3))) . 1)) ((((((sin (quotient (times 4 pi) 5)) . 3) . -1) (((sin (quotient (times 4 pi) 5)) . 1) (((cos (quotient (times 4 pi) 5)) . 2) . 3))) . 1) (((((sin (quotient (times 4 pi) 5)) . 2) (((cos (quotient (times 4 pi) 5)) . 1) . -3)) (((cos (quotient (times 4 pi) 5)) . 3) . 1)) . 1)))) (r4d5 (((((((sin (quotient (times 4 pi) 5)) . 4) . 1) (((sin (quotient (times 4 pi) 5)) . 2) (((cos (quotient (times 4 pi) 5)) . 2) . -6)) (((cos (quotient (times 4 pi) 5)) . 4) . 1)) . 1) (((((sin (quotient (times 4 pi) 5)) . 3) (((cos (quotient (times 4 pi) 5)) . 1) . 4)) (((sin (quotient (times 4 pi) 5)) . 1) (((cos (quotient (times 4 pi) 5)) . 3) . -4))) . 1)) ((((((sin (quotient (times 4 pi) 5)) . 3) (((cos (quotient (times 4 pi) 5)) . 1) . -4)) (((sin (quotient (times 4 pi) 5)) . 1) (((cos (quotient (times 4 pi) 5)) . 3) . 4))) . 1) (((((sin (quotient (times 4 pi) 5)) . 4) . 1) (((sin (quotient (times 4 pi) 5)) . 2) (((cos (quotient (times 4 pi) 5)) . 2) . -6)) (((cos (quotient (times 4 pi) 5)) . 4) . 1)) . 1)))) (sd5 (((1 . 1) (nil . 1)) ((nil . 1) (-1 . 1)))) (srd5 (((((((cos (quotient (times 4 pi) 5)) . 1) . 1)) . 1) (((((sin (quotient (times 4 pi) 5)) . 1) . -1)) . 1)) ((((((sin (quotient (times 4 pi) 5)) . 1) . -1)) . 1) (((((cos (quotient (times 4 pi) 5)) . 1) . -1)) . 1)))) (sr2d5 (((((((sin (quotient (times 4 pi) 5)) . 2) . -1) (((cos (quotient (times 4 pi) 5)) . 2) . 1)) . 1) (((((sin (quotient (times 4 pi) 5)) . 1) (((cos (quotient (times 4 pi) 5)) . 1) . -2))) . 1)) ((((((sin (quotient (times 4 pi) 5)) . 1) (((cos (quotient (times 4 pi) 5)) . 1) . -2))) . 1) (((((sin (quotient (times 4 pi) 5)) . 2) . 1) (((cos (quotient (times 4 pi) 5)) . 2) . -1)) . 1)))) (sr3d5 (((((((sin (quotient (times 4 pi) 5)) . 2) (((cos (quotient (times 4 pi) 5)) . 1) . -3)) (((cos (quotient (times 4 pi) 5)) . 3) . 1)) . 1) (((((sin (quotient (times 4 pi) 5)) . 3) . 1) (((sin (quotient (times 4 pi) 5)) . 1) (((cos (quotient (times 4 pi) 5)) . 2) . -3))) . 1)) ((((((sin (quotient (times 4 pi) 5)) . 3) . 1) (((sin (quotient (times 4 pi) 5)) . 1) (((cos (quotient (times 4 pi) 5)) . 2) . -3))) . 1) (((((sin (quotient (times 4 pi) 5)) . 2) (((cos (quotient (times 4 pi) 5)) . 1) . 3)) (((cos (quotient (times 4 pi) 5)) . 3) . -1)) . 1)))) (sr4d5 (((((((sin (quotient (times 4 pi) 5)) . 4) . 1) (((sin (quotient (times 4 pi) 5)) . 2) (((cos (quotient (times 4 pi) 5)) . 2) . -6)) (((cos (quotient (times 4 pi) 5)) . 4) . 1)) . 1) (((((sin (quotient (times 4 pi) 5)) . 3) (((cos (quotient (times 4 pi) 5)) . 1) . 4)) (((sin (quotient (times 4 pi) 5)) . 1) (((cos (quotient (times 4 pi) 5)) . 3) . -4))) . 1)) ((((((sin (quotient (times 4 pi) 5)) . 3) (((cos (quotient (times 4 pi) 5)) . 1) . 4)) (((sin (quotient (times 4 pi) 5)) . 1) (((cos (quotient (times 4 pi) 5)) . 3) . -4))) . 1) (((((sin (quotient (times 4 pi) 5)) . 4) . -1) (((sin (quotient (times 4 pi) 5)) . 2) (((cos (quotient (times 4 pi) 5)) . 2) . 6)) (((cos (quotient (times 4 pi) 5)) . 4) . -1)) . 1))))),'real)$ set!*available 'd5$ set!*elems!*group('d6, '(id rd6 r2d6 r3d6 r4d6 r5d6 sd6 srd6 sr2d6 sr3d6 sr4d6 sr5d6))$ set!*generators('d6,'(rd6 sd6))$ set!*relations('d6, '(((sd6 sd6) (id)) ((rd6 rd6 rd6 rd6 rd6 rd6) (id)) ((sd6 rd6 sd6) (rd6 rd6 rd6 rd6 rd6))))$ set!*grouptable('d6, '((grouptable id rd6 r2d6 r3d6 r4d6 r5d6 sd6 srd6 sr2d6 sr3d6 sr4d6 sr5d6) (id id rd6 r2d6 r3d6 r4d6 r5d6 sd6 srd6 sr2d6 sr3d6 sr4d6 sr5d6) (rd6 rd6 r2d6 r3d6 r4d6 r5d6 id sr5d6 sd6 srd6 sr2d6 sr3d6 sr4d6) (r2d6 r2d6 r3d6 r4d6 r5d6 id rd6 sr4d6 sr5d6 sd6 srd6 sr2d6 sr3d6) (r3d6 r3d6 r4d6 r5d6 id rd6 r2d6 sr3d6 sr4d6 sr5d6 sd6 srd6 sr2d6) (r4d6 r4d6 r5d6 id rd6 r2d6 r3d6 sr2d6 sr3d6 sr4d6 sr5d6 sd6 srd6) (r5d6 r5d6 id rd6 r2d6 r3d6 r4d6 srd6 sr2d6 sr3d6 sr4d6 sr5d6 sd6) (sd6 sd6 srd6 sr2d6 sr3d6 sr4d6 sr5d6 id rd6 r2d6 r3d6 r4d6 r5d6) (srd6 srd6 sr2d6 sr3d6 sr4d6 sr5d6 sd6 r5d6 id rd6 r2d6 r3d6 r4d6) (sr2d6 sr2d6 sr3d6 sr4d6 sr5d6 sd6 srd6 r4d6 r5d6 id rd6 r2d6 r3d6) (sr3d6 sr3d6 sr4d6 sr5d6 sd6 srd6 sr2d6 r3d6 r4d6 r5d6 id rd6 r2d6) (sr4d6 sr4d6 sr5d6 sd6 srd6 sr2d6 sr3d6 r2d6 r3d6 r4d6 r5d6 id rd6) (sr5d6 sr5d6 sd6 srd6 sr2d6 sr3d6 sr4d6 rd6 r2d6 r3d6 r4d6 r5d6 id)))$ set!*inverse('d6, '((id rd6 r2d6 r3d6 r4d6 r5d6 sd6 srd6 sr2d6 sr3d6 sr4d6 sr5d6) (id r5d6 r4d6 r3d6 r2d6 rd6 sd6 srd6 sr2d6 sr3d6 sr4d6 sr5d6)))$ set!*elemasgen('d6, '(((rd6) (rd6)) ((r2d6) (rd6 rd6)) ((r3d6) (rd6 rd6 rd6)) ((r4d6) (rd6 rd6 rd6 rd6)) ((r5d6) (rd6 rd6 rd6 rd6 rd6)) ((sd6) (sd6)) ((srd6) (sd6 rd6)) ((sr2d6) (sd6 rd6 rd6)) ((sr3d6) (sd6 rd6 rd6 rd6)) ((sr4d6) (sd6 rd6 rd6 rd6 rd6)) ((sr5d6) (sd6 rd6 rd6 rd6 rd6 rd6))))$ set!*group('d6, '((id) (rd6 r5d6) (r2d6 r4d6) (r3d6) (sr2d6 sd6 sr4d6) (srd6 sr5d6 sr3d6)))$ set!*representation('d6, '((id (((1 . 1)))) (rd6 (((1 . 1)))) (r2d6 (((1 . 1)))) (r3d6 (((1 . 1)))) (r4d6 (((1 . 1)))) (r5d6 (((1 . 1)))) (sd6 (((1 . 1)))) (srd6 (((1 . 1)))) (sr2d6 (((1 . 1)))) (sr3d6 (((1 . 1)))) (sr4d6 (((1 . 1)))) (sr5d6 (((1 . 1))))),'complex)$ set!*representation('d6, '((id (((1 . 1)))) (rd6 (((1 . 1)))) (r2d6 (((1 . 1)))) (r3d6 (((1 . 1)))) (r4d6 (((1 . 1)))) (r5d6 (((1 . 1)))) (sd6 (((-1 . 1)))) (srd6 (((-1 . 1)))) (sr2d6 (((-1 . 1)))) (sr3d6 (((-1 . 1)))) (sr4d6 (((-1 . 1)))) (sr5d6 (((-1 . 1))))),'complex)$ set!*representation('d6, '((id (((1 . 1)))) (rd6 (((-1 . 1)))) (r2d6 (((1 . 1)))) (r3d6 (((-1 . 1)))) (r4d6 (((1 . 1)))) (r5d6 (((-1 . 1)))) (sd6 (((1 . 1)))) (srd6 (((-1 . 1)))) (sr2d6 (((1 . 1)))) (sr3d6 (((-1 . 1)))) (sr4d6 (((1 . 1)))) (sr5d6 (((-1 . 1))))),'complex)$ set!*representation('d6, '((id (((1 . 1)))) (rd6 (((-1 . 1)))) (r2d6 (((1 . 1)))) (r3d6 (((-1 . 1)))) (r4d6 (((1 . 1)))) (r5d6 (((-1 . 1)))) (sd6 (((-1 . 1)))) (srd6 (((1 . 1)))) (sr2d6 (((-1 . 1)))) (sr3d6 (((1 . 1)))) (sr4d6 (((-1 . 1)))) (sr5d6 (((1 . 1))))),'complex)$ set!*representation('d6, '((id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1)))) (rd6 (((1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (1 . 2)))) (r2d6 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (-1 . 2)))) (r3d6 (((-1 . 1) (nil . 1)) ((nil . 1) (-1 . 1)))) (r4d6 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2)))) (r5d6 (((1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (1 . 2)))) (sd6 (((1 . 1) (nil . 1)) ((nil . 1) (-1 . 1)))) (srd6 (((1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2)))) (sr2d6 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (1 . 2)))) (sr3d6 (((-1 . 1) (nil . 1)) ((nil . 1) (1 . 1)))) (sr4d6 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (1 . 2)))) (sr5d6 (((1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (-1 . 2))))),'complex)$ set!*representation('d6, '((id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1)))) (rd6 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (-1 . 2)))) (r2d6 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2)))) (r3d6 (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1)))) (r4d6 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (-1 . 2)))) (r5d6 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2)))) (sd6 (((1 . 1) (nil . 1)) ((nil . 1) (-1 . 1)))) (srd6 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (1 . 2)))) (sr2d6 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (1 . 2)))) (sr3d6 (((1 . 1) (nil . 1)) ((nil . 1) (-1 . 1)))) (sr4d6 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (1 . 2)))) (sr5d6 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (1 . 2))))),'complex)$ set!*representation('d6, '(realtype (id (((1 . 1)))) (rd6 (((1 . 1)))) (r2d6 (((1 . 1)))) (r3d6 (((1 . 1)))) (r4d6 (((1 . 1)))) (r5d6 (((1 . 1)))) (sd6 (((1 . 1)))) (srd6 (((1 . 1)))) (sr2d6 (((1 . 1)))) (sr3d6 (((1 . 1)))) (sr4d6 (((1 . 1)))) (sr5d6 (((1 . 1))))),'real)$ set!*representation('d6, '(realtype (id (((1 . 1)))) (rd6 (((1 . 1)))) (r2d6 (((1 . 1)))) (r3d6 (((1 . 1)))) (r4d6 (((1 . 1)))) (r5d6 (((1 . 1)))) (sd6 (((-1 . 1)))) (srd6 (((-1 . 1)))) (sr2d6 (((-1 . 1)))) (sr3d6 (((-1 . 1)))) (sr4d6 (((-1 . 1)))) (sr5d6 (((-1 . 1))))),'real)$ set!*representation('d6, '(realtype (id (((1 . 1)))) (rd6 (((-1 . 1)))) (r2d6 (((1 . 1)))) (r3d6 (((-1 . 1)))) (r4d6 (((1 . 1)))) (r5d6 (((-1 . 1)))) (sd6 (((1 . 1)))) (srd6 (((-1 . 1)))) (sr2d6 (((1 . 1)))) (sr3d6 (((-1 . 1)))) (sr4d6 (((1 . 1)))) (sr5d6 (((-1 . 1))))),'real)$ set!*representation('d6, '(realtype (id (((1 . 1)))) (rd6 (((-1 . 1)))) (r2d6 (((1 . 1)))) (r3d6 (((-1 . 1)))) (r4d6 (((1 . 1)))) (r5d6 (((-1 . 1)))) (sd6 (((-1 . 1)))) (srd6 (((1 . 1)))) (sr2d6 (((-1 . 1)))) (sr3d6 (((1 . 1)))) (sr4d6 (((-1 . 1)))) (sr5d6 (((1 . 1))))),'real)$ set!*representation('d6, '(realtype (id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1)))) (rd6 (((1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (1 . 2)))) (r2d6 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (-1 . 2)))) (r3d6 (((-1 . 1) (nil . 1)) ((nil . 1) (-1 . 1)))) (r4d6 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2)))) (r5d6 (((1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (1 . 2)))) (sd6 (((1 . 1) (nil . 1)) ((nil . 1) (-1 . 1)))) (srd6 (((1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2)))) (sr2d6 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (1 . 2)))) (sr3d6 (((-1 . 1) (nil . 1)) ((nil . 1) (1 . 1)))) (sr4d6 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (1 . 2)))) (sr5d6 (((1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (-1 . 2))))),'real)$ set!*representation('d6, '(realtype (id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1)))) (rd6 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (-1 . 2)))) (r2d6 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2)))) (r3d6 (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1)))) (r4d6 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (-1 . 2)))) (r5d6 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2)))) (sd6 (((1 . 1) (nil . 1)) ((nil . 1) (-1 . 1)))) (srd6 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (1 . 2)))) (sr2d6 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (1 . 2)))) (sr3d6 (((1 . 1) (nil . 1)) ((nil . 1) (-1 . 1)))) (sr4d6 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (1 . 2)))) (sr5d6 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (1 . 2))))),'real)$ set!*available 'd6$ set!*elems!*group('c3,'(id rc3 r2c3))$ set!*generators('c3,'(rc3))$ set!*relations('c3,'(((rc3 rc3 rc3) (id))))$ set!*grouptable('c3, '((grouptable id rc3 r2c3) (id id rc3 r2c3) (rc3 rc3 r2c3 id) (r2c3 r2c3 id rc3)))$ set!*inverse('c3,'((id rc3 r2c3) (id r2c3 rc3)))$ set!*elemasgen('c3,'(((rc3) (rc3)) ((r2c3) (rc3 rc3))))$ set!*group('c3,'((id) (rc3) (r2c3)))$ set!*representation('c3, '((id (((1 . 1)))) (rc3 (((1 . 1)))) (r2c3 (((1 . 1))))), 'complex)$ set!*representation('c3, '((id (((1 . 1)))) (rc3 (((((((expt 3 (quotient 1 2)) . 1) ((i . 1) . 1)) . -1) . 2)))) (r2c3 (((((((expt 3 (quotient 1 2)) . 1) ((i . 1) . -1)) . -1) . 2))))),'complex)$ set!*representation('c3, '((id (((1 . 1)))) (rc3 (((((((expt 3 (quotient 1 2)) . 1) ((i . 1) . -1)) . -1) . 2)))) (r2c3 (((((((expt 3 (quotient 1 2)) . 1) ((i . 1) . 1)) . -1) . 2))))),'complex)$ set!*representation('c3, '(realtype (id (((1 . 1)))) (rc3 (((1 . 1)))) (r2c3 (((1 . 1))))),'real)$ set!*representation('c3, '(complextype (id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1)))) (rc3 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2)))) (r2c3 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (-1 . 2))))),'real)$ set!*available 'c3$ set!*elems!*group('c4,'(id rc4 r2c4 r3c4))$ set!*generators('c4,'(rc4))$ set!*relations('c4,'(((rc4 rc4 rc4 rc4) (id))))$ set!*grouptable('c4, '((grouptable id rc4 r2c4 r3c4) (id id rc4 r2c4 r3c4) (rc4 rc4 r2c4 r3c4 id) (r2c4 r2c4 r3c4 id rc4) (r3c4 r3c4 id rc4 r2c4)))$ set!*inverse('c4,'((id rc4 r2c4 r3c4) (id r3c4 r2c4 rc4)))$ set!*elemasgen('c4, '(((rc4) (rc4)) ((r2c4) (rc4 rc4)) ((r3c4) (rc4 rc4 rc4))))$ set!*group('c4,'((id) (rc4) (r2c4) (r3c4)))$ set!*representation('c4, '((id (((1 . 1)))) (rc4 (((1 . 1)))) (r2c4 (((1 . 1)))) (r3c4 (((1 . 1))))),'complex)$ set!*representation('c4, '((id (((1 . 1)))) (rc4 (((-1 . 1)))) (r2c4 (((1 . 1)))) (r3c4 (((-1 . 1))))),'complex)$ set!*representation('c4, '((id (((1 . 1)))) (rc4 ((((((i . 1) . 1)) . 1)))) (r2c4 (((-1 . 1)))) (r3c4 ((((((i . 1) . -1)) . 1))))),'complex)$ set!*representation('c4, '((id (((1 . 1)))) (rc4 ((((((i . 1) . -1)) . 1)))) (r2c4 (((-1 . 1)))) (r3c4 ((((((i . 1) . 1)) . 1))))),'complex)$ set!*representation('c4, '(realtype (id (((1 . 1)))) (rc4 (((1 . 1)))) (r2c4 (((1 . 1)))) (r3c4 (((1 . 1))))),'real)$ set!*representation('c4, '(realtype (id (((1 . 1)))) (rc4 (((-1 . 1)))) (r2c4 (((1 . 1)))) (r3c4 (((-1 . 1))))),'real)$ set!*representation('c4, '(complextype (id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1)))) (rc4 (((nil . 1) (-1 . 1)) ((1 . 1) (nil . 1)))) (r2c4 (((-1 . 1) (nil . 1)) ((nil . 1) (-1 . 1)))) (r3c4 (((nil . 1) (1 . 1)) ((-1 . 1) (nil . 1))))),'real)$ set!*available 'c4$ set!*elems!*group('c5,'(id rc5 r2c5 r3c5 r4c5))$ set!*generators('c5,'(rc5))$ set!*relations('c5,'(((rc5 rc5 rc5 rc5 rc5) (id))))$ set!*grouptable('c5, '((grouptable id rc5 r2c5 r3c5 r4c5) (id id rc5 r2c5 r3c5 r4c5) (rc5 rc5 r2c5 r3c5 r4c5 id) (r2c5 r2c5 r3c5 r4c5 id rc5) (r3c5 r3c5 r4c5 id rc5 r2c5) (r4c5 r4c5 id rc5 r2c5 r3c5)))$ set!*inverse('c5,'((id rc5 r2c5 r3c5 r4c5) (id r4c5 r3c5 r2c5 rc5)))$ set!*elemasgen('c5, '(((rc5) (rc5)) ((r2c5) (rc5 rc5)) ((r3c5) (rc5 rc5 rc5)) ((r4c5) (rc5 rc5 rc5 rc5))))$ set!*group('c5,'((id) (rc5) (r2c5) (r3c5) (r4c5)))$ set!*representation('c5, '((id (((1 . 1)))) (rc5 (((1 . 1)))) (r2c5 (((1 . 1)))) (r3c5 (((1 . 1)))) (r4c5 (((1 . 1))))),'complex)$ set!*representation('c5, '((id (((1 . 1)))) (rc5 (((((((sin (quotient (times 2 pi) 5)) . 1) ((i . 1) . 1)) (((cos (quotient (times 2 pi) 5)) . 1) . 1)) . 1)))) (r2c5 (((((((sin (quotient (times 2 pi) 5)) . 2) . -1) (((sin (quotient (times 2 pi) 5)) . 1) (((cos (quotient (times 2 pi) 5)) . 1) ((i . 1) . 2))) (((cos (quotient (times 2 pi) 5)) . 2) . 1)) . 1)))) (r3c5 (((((((sin (quotient (times 2 pi) 5)) . 3) ((i . 1) . -1)) (((sin (quotient (times 2 pi) 5)) . 2) (((cos (quotient (times 2 pi) 5)) . 1) . -3)) (((sin (quotient (times 2 pi) 5)) . 1) (((cos (quotient (times 2 pi) 5)) . 2) ((i . 1) . 3))) (((cos (quotient (times 2 pi) 5)) . 3) . 1)) . 1)))) (r4c5 (((((((sin (quotient (times 2 pi) 5)) . 4) . 1) (((sin (quotient (times 2 pi) 5)) . 3) (((cos (quotient (times 2 pi) 5)) . 1) ((i . 1) . -4))) (((sin (quotient (times 2 pi) 5)) . 2) (((cos (quotient (times 2 pi) 5)) . 2) . -6)) (((sin (quotient (times 2 pi) 5)) . 1) (((cos (quotient (times 2 pi) 5)) . 3) ((i . 1) . 4))) (((cos (quotient (times 2 pi) 5)) . 4) . 1)) . 1))))),'complex)$ set!*representation('c5, '((id (((1 . 1)))) (rc5 (((((((sin (quotient (times 4 pi) 5)) . 1) ((i . 1) . 1)) (((cos (quotient (times 4 pi) 5)) . 1) . 1)) . 1)))) (r2c5 (((((((sin (quotient (times 4 pi) 5)) . 2) . -1) (((sin (quotient (times 4 pi) 5)) . 1) (((cos (quotient (times 4 pi) 5)) . 1) ((i . 1) . 2))) (((cos (quotient (times 4 pi) 5)) . 2) . 1)) . 1)))) (r3c5 (((((((sin (quotient (times 4 pi) 5)) . 3) ((i . 1) . -1)) (((sin (quotient (times 4 pi) 5)) . 2) (((cos (quotient (times 4 pi) 5)) . 1) . -3)) (((sin (quotient (times 4 pi) 5)) . 1) (((cos (quotient (times 4 pi) 5)) . 2) ((i . 1) . 3))) (((cos (quotient (times 4 pi) 5)) . 3) . 1)) . 1)))) (r4c5 (((((((sin (quotient (times 4 pi) 5)) . 4) . 1) (((sin (quotient (times 4 pi) 5)) . 3) (((cos (quotient (times 4 pi) 5)) . 1) ((i . 1) . -4))) (((sin (quotient (times 4 pi) 5)) . 2) (((cos (quotient (times 4 pi) 5)) . 2) . -6)) (((sin (quotient (times 4 pi) 5)) . 1) (((cos (quotient (times 4 pi) 5)) . 3) ((i . 1) . 4))) (((cos (quotient (times 4 pi) 5)) . 4) . 1)) . 1))))),'complex)$ set!*representation('c5, '((id (((1 . 1)))) (rc5 (((((((sin (quotient (times 4 pi) 5)) . 1) ((i . 1) . -1)) (((cos (quotient (times 4 pi) 5)) . 1) . 1)) . 1)))) (r2c5 (((((((sin (quotient (times 4 pi) 5)) . 2) . -1) (((sin (quotient (times 4 pi) 5)) . 1) (((cos (quotient (times 4 pi) 5)) . 1) ((i . 1) . -2))) (((cos (quotient (times 4 pi) 5)) . 2) . 1)) . 1)))) (r3c5 (((((((sin (quotient (times 4 pi) 5)) . 3) ((i . 1) . 1)) (((sin (quotient (times 4 pi) 5)) . 2) (((cos (quotient (times 4 pi) 5)) . 1) . -3)) (((sin (quotient (times 4 pi) 5)) . 1) (((cos (quotient (times 4 pi) 5)) . 2) ((i . 1) . -3))) (((cos (quotient (times 4 pi) 5)) . 3) . 1)) . 1)))) (r4c5 (((((((sin (quotient (times 4 pi) 5)) . 4) . 1) (((sin (quotient (times 4 pi) 5)) . 3) (((cos (quotient (times 4 pi) 5)) . 1) ((i . 1) . 4))) (((sin (quotient (times 4 pi) 5)) . 2) (((cos (quotient (times 4 pi) 5)) . 2) . -6)) (((sin (quotient (times 4 pi) 5)) . 1) (((cos (quotient (times 4 pi) 5)) . 3) ((i . 1) . -4))) (((cos (quotient (times 4 pi) 5)) . 4) . 1)) . 1))))),'complex)$ set!*representation('c5, '((id (((1 . 1)))) (rc5 (((((((sin (quotient (times 2 pi) 5)) . 1) ((i . 1) . -1)) (((cos (quotient (times 2 pi) 5)) . 1) . 1)) . 1)))) (r2c5 (((((((sin (quotient (times 2 pi) 5)) . 2) . -1) (((sin (quotient (times 2 pi) 5)) . 1) (((cos (quotient (times 2 pi) 5)) . 1) ((i . 1) . -2))) (((cos (quotient (times 2 pi) 5)) . 2) . 1)) . 1)))) (r3c5 (((((((sin (quotient (times 2 pi) 5)) . 3) ((i . 1) . 1)) (((sin (quotient (times 2 pi) 5)) . 2) (((cos (quotient (times 2 pi) 5)) . 1) . -3)) (((sin (quotient (times 2 pi) 5)) . 1) (((cos (quotient (times 2 pi) 5)) . 2) ((i . 1) . -3))) (((cos (quotient (times 2 pi) 5)) . 3) . 1)) . 1)))) (r4c5 (((((((sin (quotient (times 2 pi) 5)) . 4) . 1) (((sin (quotient (times 2 pi) 5)) . 3) (((cos (quotient (times 2 pi) 5)) . 1) ((i . 1) . 4))) (((sin (quotient (times 2 pi) 5)) . 2) (((cos (quotient (times 2 pi) 5)) . 2) . -6)) (((sin (quotient (times 2 pi) 5)) . 1) (((cos (quotient (times 2 pi) 5)) . 3) ((i . 1) . -4))) (((cos (quotient (times 2 pi) 5)) . 4) . 1)) . 1))))),'complex)$ set!*representation('c5, '(realtype (id (((1 . 1)))) (rc5 (((1 . 1)))) (r2c5 (((1 . 1)))) (r3c5 (((1 . 1)))) (r4c5 (((1 . 1))))),'real)$ set!*representation('c5, '(complextype (id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1)))) (rc5 (((((((cos (quotient (times 2 pi) 5)) . 1) . 1)) . 1) (((((sin (quotient (times 2 pi) 5)) . 1) . -1)) . 1)) ((((((sin (quotient (times 2 pi) 5)) . 1) . 1)) . 1) (((((cos (quotient (times 2 pi) 5)) . 1) . 1)) . 1)))) (r2c5 (((((((sin (quotient (times 2 pi) 5)) . 2) . -1) (((cos (quotient (times 2 pi) 5)) . 2) . 1)) . 1) (((((sin (quotient (times 2 pi) 5)) . 1) (((cos (quotient (times 2 pi) 5)) . 1) . -2))) . 1)) ((((((sin (quotient (times 2 pi) 5)) . 1) (((cos (quotient (times 2 pi) 5)) . 1) . 2))) . 1) (((((sin (quotient (times 2 pi) 5)) . 2) . -1) (((cos (quotient (times 2 pi) 5)) . 2) . 1)) . 1)))) (r3c5 (((((((sin (quotient (times 2 pi) 5)) . 2) (((cos (quotient (times 2 pi) 5)) . 1) . -3)) (((cos (quotient (times 2 pi) 5)) . 3) . 1)) . 1) (((((sin (quotient (times 2 pi) 5)) . 3) . 1) (((sin (quotient (times 2 pi) 5)) . 1) (((cos (quotient (times 2 pi) 5)) . 2) . -3))) . 1)) ((((((sin (quotient (times 2 pi) 5)) . 3) . -1) (((sin (quotient (times 2 pi) 5)) . 1) (((cos (quotient (times 2 pi) 5)) . 2) . 3))) . 1) (((((sin (quotient (times 2 pi) 5)) . 2) (((cos (quotient (times 2 pi) 5)) . 1) . -3)) (((cos (quotient (times 2 pi) 5)) . 3) . 1)) . 1)))) (r4c5 (((((((sin (quotient (times 2 pi) 5)) . 4) . 1) (((sin (quotient (times 2 pi) 5)) . 2) (((cos (quotient (times 2 pi) 5)) . 2) . -6)) (((cos (quotient (times 2 pi) 5)) . 4) . 1)) . 1) (((((sin (quotient (times 2 pi) 5)) . 3) (((cos (quotient (times 2 pi) 5)) . 1) . 4)) (((sin (quotient (times 2 pi) 5)) . 1) (((cos (quotient (times 2 pi) 5)) . 3) . -4))) . 1)) ((((((sin (quotient (times 2 pi) 5)) . 3) (((cos (quotient (times 2 pi) 5)) . 1) . -4)) (((sin (quotient (times 2 pi) 5)) . 1) (((cos (quotient (times 2 pi) 5)) . 3) . 4))) . 1) (((((sin (quotient (times 2 pi) 5)) . 4) . 1) (((sin (quotient (times 2 pi) 5)) . 2) (((cos (quotient (times 2 pi) 5)) . 2) . -6)) (((cos (quotient (times 2 pi) 5)) . 4) . 1)) . 1))))),'real)$ set!*representation('c5, '(complextype (id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1)))) (rc5 (((((((cos (quotient (times 4 pi) 5)) . 1) . 1)) . 1) (((((sin (quotient (times 4 pi) 5)) . 1) . -1)) . 1)) ((((((sin (quotient (times 4 pi) 5)) . 1) . 1)) . 1) (((((cos (quotient (times 4 pi) 5)) . 1) . 1)) . 1)))) (r2c5 (((((((sin (quotient (times 4 pi) 5)) . 2) . -1) (((cos (quotient (times 4 pi) 5)) . 2) . 1)) . 1) (((((sin (quotient (times 4 pi) 5)) . 1) (((cos (quotient (times 4 pi) 5)) . 1) . -2))) . 1)) ((((((sin (quotient (times 4 pi) 5)) . 1) (((cos (quotient (times 4 pi) 5)) . 1) . 2))) . 1) (((((sin (quotient (times 4 pi) 5)) . 2) . -1) (((cos (quotient (times 4 pi) 5)) . 2) . 1)) . 1)))) (r3c5 (((((((sin (quotient (times 4 pi) 5)) . 2) (((cos (quotient (times 4 pi) 5)) . 1) . -3)) (((cos (quotient (times 4 pi) 5)) . 3) . 1)) . 1) (((((sin (quotient (times 4 pi) 5)) . 3) . 1) (((sin (quotient (times 4 pi) 5)) . 1) (((cos (quotient (times 4 pi) 5)) . 2) . -3))) . 1)) ((((((sin (quotient (times 4 pi) 5)) . 3) . -1) (((sin (quotient (times 4 pi) 5)) . 1) (((cos (quotient (times 4 pi) 5)) . 2) . 3))) . 1) (((((sin (quotient (times 4 pi) 5)) . 2) (((cos (quotient (times 4 pi) 5)) . 1) . -3)) (((cos (quotient (times 4 pi) 5)) . 3) . 1)) . 1)))) (r4c5 (((((((sin (quotient (times 4 pi) 5)) . 4) . 1) (((sin (quotient (times 4 pi) 5)) . 2) (((cos (quotient (times 4 pi) 5)) . 2) . -6)) (((cos (quotient (times 4 pi) 5)) . 4) . 1)) . 1) (((((sin (quotient (times 4 pi) 5)) . 3) (((cos (quotient (times 4 pi) 5)) . 1) . 4)) (((sin (quotient (times 4 pi) 5)) . 1) (((cos (quotient (times 4 pi) 5)) . 3) . -4))) . 1)) ((((((sin (quotient (times 4 pi) 5)) . 3) (((cos (quotient (times 4 pi) 5)) . 1) . -4)) (((sin (quotient (times 4 pi) 5)) . 1) (((cos (quotient (times 4 pi) 5)) . 3) . 4))) . 1) (((((sin (quotient (times 4 pi) 5)) . 4) . 1) (((sin (quotient (times 4 pi) 5)) . 2) (((cos (quotient (times 4 pi) 5)) . 2) . -6)) (((cos (quotient (times 4 pi) 5)) . 4) . 1)) . 1))))),'real)$ set!*available 'c5$ endmodule; module symdata2; % Symmetry data, part 2. % Author: Karin Gatermann <Gatermann@sc.ZIB-Berlin.de>. set!*elems!*group('c6,'(id rc6 r2c6 r3c6 r4c6 r5c6))$ set!*generators('c6,'(rc6))$ set!*relations('c6,'(((rc6 rc6 rc6 rc6 rc6 rc6) (id))))$ set!*grouptable('c6, '((grouptable id rc6 r2c6 r3c6 r4c6 r5c6) (id id rc6 r2c6 r3c6 r4c6 r5c6) (rc6 rc6 r2c6 r3c6 r4c6 r5c6 id) (r2c6 r2c6 r3c6 r4c6 r5c6 id rc6) (r3c6 r3c6 r4c6 r5c6 id rc6 r2c6) (r4c6 r4c6 r5c6 id rc6 r2c6 r3c6) (r5c6 r5c6 id rc6 r2c6 r3c6 r4c6)))$ set!*inverse('c6, '((id rc6 r2c6 r3c6 r4c6 r5c6) (id r5c6 r4c6 r3c6 r2c6 rc6)))$ set!*elemasgen('c6, '(((rc6) (rc6)) ((r2c6) (rc6 rc6)) ((r3c6) (rc6 rc6 rc6)) ((r4c6) (rc6 rc6 rc6 rc6)) ((r5c6) (rc6 rc6 rc6 rc6 rc6))))$ set!*group('c6,'((id) (rc6) (r2c6) (r3c6) (r4c6) (r5c6)))$ set!*representation('c6, '((id (((1 . 1)))) (rc6 (((1 . 1)))) (r2c6 (((1 . 1)))) (r3c6 (((1 . 1)))) (r4c6 (((1 . 1)))) (r5c6 (((1 . 1))))),'complex)$ set!*representation('c6, '((id (((1 . 1)))) (rc6 (((-1 . 1)))) (r2c6 (((1 . 1)))) (r3c6 (((-1 . 1)))) (r4c6 (((1 . 1)))) (r5c6 (((-1 . 1))))),'complex)$ set!*representation('c6, '((id (((1 . 1)))) (rc6 (((((((expt 3 (quotient 1 2)) . 1) ((i . 1) . 1)) . 1) . 2)))) (r2c6 (((((((expt 3 (quotient 1 2)) . 1) ((i . 1) . 1)) . -1) . 2)))) (r3c6 (((-1 . 1)))) (r4c6 (((((((expt 3 (quotient 1 2)) . 1) ((i . 1) . -1)) . -1) . 2)))) (r5c6 (((((((expt 3 (quotient 1 2)) . 1) ((i . 1) . -1)) . 1) . 2))))),'complex)$ set!*representation('c6, '((id (((1 . 1)))) (rc6 (((((((expt 3 (quotient 1 2)) . 1) ((i . 1) . 1)) . -1) . 2)))) (r2c6 (((((((expt 3 (quotient 1 2)) . 1) ((i . 1) . -1)) . -1) . 2)))) (r3c6 (((1 . 1)))) (r4c6 (((((((expt 3 (quotient 1 2)) . 1) ((i . 1) . 1)) . -1) . 2)))) (r5c6 (((((((expt 3 (quotient 1 2)) . 1) ((i . 1) . -1)) . -1) . 2))))),'complex)$ set!*representation('c6, '((id (((1 . 1)))) (rc6 (((((((expt 3 (quotient 1 2)) . 1) ((i . 1) . -1)) . -1) . 2)))) (r2c6 (((((((expt 3 (quotient 1 2)) . 1) ((i . 1) . 1)) . -1) . 2)))) (r3c6 (((1 . 1)))) (r4c6 (((((((expt 3 (quotient 1 2)) . 1) ((i . 1) . -1)) . -1) . 2)))) (r5c6 (((((((expt 3 (quotient 1 2)) . 1) ((i . 1) . 1)) . -1) . 2))))),'complex)$ set!*representation('c6, '((id (((1 . 1)))) (rc6 (((((((expt 3 (quotient 1 2)) . 1) ((i . 1) . -1)) . 1) . 2)))) (r2c6 (((((((expt 3 (quotient 1 2)) . 1) ((i . 1) . -1)) . -1) . 2)))) (r3c6 (((-1 . 1)))) (r4c6 (((((((expt 3 (quotient 1 2)) . 1) ((i . 1) . 1)) . -1) . 2)))) (r5c6 (((((((expt 3 (quotient 1 2)) . 1) ((i . 1) . 1)) . 1) . 2))))),'complex)$ set!*representation('c6, '(realtype (id (((1 . 1)))) (rc6 (((1 . 1)))) (r2c6 (((1 . 1)))) (r3c6 (((1 . 1)))) (r4c6 (((1 . 1)))) (r5c6 (((1 . 1))))),'real)$ set!*representation('c6, '(realtype (id (((1 . 1)))) (rc6 (((-1 . 1)))) (r2c6 (((1 . 1)))) (r3c6 (((-1 . 1)))) (r4c6 (((1 . 1)))) (r5c6 (((-1 . 1))))),'real)$ set!*representation('c6, '(complextype (id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1)))) (rc6 (((1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (1 . 2)))) (r2c6 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2)))) (r3c6 (((-1 . 1) (nil . 1)) ((nil . 1) (-1 . 1)))) (r4c6 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (-1 . 2)))) (r5c6 (((1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (1 . 2))))),'real)$ set!*representation('c6, '(complextype (id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1)))) (rc6 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2)))) (r2c6 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (-1 . 2)))) (r3c6 (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1)))) (r4c6 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2)))) (r5c6 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (-1 . 2))))),'real)$ set!*available 'c6$ set!*elems!*group('s4, '(id bacd acbd abdc dbca cabd bcad dacb bdca dbac cbda adbc acdb badc cdab dcba cbad adcb bcda bdac cadb dabc cdba dcab))$ set!*generators('s4,'(bacd acbd abdc dbca))$ set!*relations('s4, '(((bacd bacd) (id)) ((acbd acbd) (id)) ((abdc abdc) (id)) ((dbca) (bacd acbd abdc acbd bacd))))$ set!*grouptable('s4, '((grouptable dcab dcba dbac dbca dabc dacb cdab cdba cbad cbda cabd cadb bdac bdca bcad bcda bacd badc adbc adcb acbd acdb id abdc) (dcab badc abdc cadb acdb cbda bcda bacd id dacb adcb dbca bdca cabd acbd dabc adbc dcba cdba cbad bcad dbac bdac dcab cdab) (dcba bacd id cabd acbd cbad bcad badc abdc dabc adbc dbac bdac cadb acdb dacb adcb dcab cdab cbda bcda dbca bdca dcba cdba) (dbac bcda acdb cbda abdc cadb badc bdca adcb dbca id dacb bacd cdba adbc dcba acbd dabc cabd cdab bdac dcab bcad dbac cbad) (dbca bcad acbd cbad id cabd bacd bdac adbc dbac abdc dabc badc cdab adcb dcab acdb dacb cadb cdba bdca dcba bcda dbca cbda) (dabc bdca adcb cdba adbc cdab bdac bcda acdb dcba acbd dcab bcad cbda abdc dbca id dbac cbad cadb badc dacb bacd dabc cabd) (dacb bdac adbc cdab adcb cdba bdca bcad acbd dcab acdb dcba bcda cbad id dbac abdc dbca cbda cabd bacd dabc badc dacb cadb) (cdab abdc badc acdb cadb bcda cbda id bacd adcb dacb bdca dbca acbd cabd adbc dabc cdba dcba bcad cbad bdac dbac cdab dcab) (cdba id bacd acbd cabd bcad cbad abdc badc adbc dabc bdac dbac acdb cadb adcb dacb cdab dcab bcda cbda bdca dbca cdba dcba) (cbad acdb bcda abdc cbda badc cadb adcb bdca id dbca bacd dacb adbc cdba acbd dcba cabd dabc bdac cdab bcad dcab cbad dbac) (cbda acbd bcad id cbad bacd cabd adbc bdac abdc dbac badc dabc adcb cdab acdb dcab cadb dacb bdca cdba bcda dcba cbda dbca) (cabd adcb bdca adbc cdba bdac cdab acdb bcda acbd dcba bcad dcab abdc cbda id dbca cbad dbac badc cadb bacd dacb cabd dabc) (cadb adbc bdac adcb cdab bdca cdba acbd bcad acdb dcab bcda dcba id cbad abdc dbac cbda dbca bacd cabd badc dabc cadb dacb) (bdac cbda cadb bcda badc acdb abdc dbca dacb bdca bacd adcb id dcba dabc cdba cabd adbc acbd dcab dbac cdab cbad bdac bcad) (bdca cbad cabd bcad bacd acbd id dbac dabc bdac badc adbc abdc dcab dacb cdab cadb adcb acdb dcba dbca cdba cbda bdca bcda) (bcad cadb cbda badc bcda abdc acdb dacb dbca bacd bdca id adcb dabc dcba cabd cdba acbd adbc dbac dcab cbad cdab bcad bdac) (bcda cabd cbad bacd bcad id acbd dabc dbac badc bdac abdc adbc dacb dcab cadb cdab acdb adcb dbca dcba cbda cdba bcda bdca) (bacd cdab cdba bdac bdca adbc adcb dcab dcba bcad bcda acbd acdb dbac dbca cbad cbda id abdc dabc dacb cabd cadb bacd badc) (badc cdba cdab bdca bdac adcb adbc dcba dcab bcda bcad acdb acbd dbca dbac cbda cbad abdc id dacb dabc cadb cabd badc bacd) (adbc dbca dacb dcba dabc dcab dbac cbda cadb cdba cabd cdab cbad bcda badc bdca bacd bdac bcad acdb abdc adcb id adbc acbd) (adcb dbac dabc dcab dacb dcba dbca cbad cabd cdab cadb cdba cbda bcad bacd bdac badc bdca bcda acbd id adbc abdc adcb acdb) (acbd dacb dbca dabc dcba dbac dcab cadb cbda cabd cdba cbad cdab badc bcda bacd bdca bcad bdac abdc acdb id adcb acbd adbc) (acdb dabc dbac dacb dcab dbca dcba cabd cbad cadb cdab cbda cdba bacd bcad badc bdac bcda bdca id acbd abdc adbc acdb adcb) (id dcab dcba dbac dbca dabc dacb cdab cdba cbad cbda cabd cadb bdac bdca bcad bcda bacd badc adbc adcb acbd acdb id abdc) (abdc dcba dcab dbca dbac dacb dabc cdba cdab cbda cbad cadb cabd bdca bdac bcda bcad badc bacd adcb adbc acdb acbd abdc id)))$ set!*inverse('s4, '((dcab dcba dbac dbca dabc dacb cdab cdba cbad cbda cabd cadb bdac bdca bcad bcda bacd badc adbc adcb acbd acdb id abdc) (cdba dcba cbda dbca bcda bdca cdab dcab cbad dbac bcad bdac cadb dacb cabd dabc bacd badc acdb adcb acbd adbc id abdc)))$ set!*elemasgen('s4, '(((bacd) (bacd)) ((acbd) (acbd)) ((abdc) (abdc)) ((dbca) (dbca)) ((cabd) (bacd acbd)) ((bcad) (acbd bacd)) ((dacb) (dbca bacd)) ((bdca) (bacd dbca)) ((dbac) (abdc dbca)) ((cbda) (dbca abdc)) ((adbc) (acbd abdc)) ((acdb) (abdc acbd)) ((badc) (bacd abdc)) ((cdab) (abdc bacd acbd dbca)) ((dcba) (acbd dbca)) ((cbad) (bacd acbd bacd)) ((adcb) (dbca bacd dbca)) ((bcda) (abdc acbd bacd)) ((bdac) (acbd bacd abdc)) ((cadb) (abdc bacd acbd)) ((dabc) (bacd acbd abdc)) ((cdba) (bacd acbd dbca)) ((dcab) (abdc acbd dbca))))$ set!*group('s4, '((dcab dabc cadb bdac bcda cdba) (dcba badc cdab) (dbac dacb cabd adbc acdb bcad bdca cbda) (dbca adcb abdc acbd bacd cbad) (id)))$ set!*representation('s4, '((id (((1 . 1)))) (bacd (((1 . 1)))) (acbd (((1 . 1)))) (abdc (((1 . 1)))) (dbca (((1 . 1)))) (cabd (((1 . 1)))) (bcad (((1 . 1)))) (dacb (((1 . 1)))) (bdca (((1 . 1)))) (dbac (((1 . 1)))) (cbda (((1 . 1)))) (adbc (((1 . 1)))) (acdb (((1 . 1)))) (badc (((1 . 1)))) (cdab (((1 . 1)))) (dcba (((1 . 1)))) (cbad (((1 . 1)))) (adcb (((1 . 1)))) (bcda (((1 . 1)))) (bdac (((1 . 1)))) (cadb (((1 . 1)))) (dabc (((1 . 1)))) (cdba (((1 . 1)))) (dcab (((1 . 1))))),'complex)$ set!*representation('s4, '((id (((1 . 1)))) (bacd (((-1 . 1)))) (acbd (((-1 . 1)))) (abdc (((-1 . 1)))) (dbca (((-1 . 1)))) (cabd (((1 . 1)))) (bcad (((1 . 1)))) (dacb (((1 . 1)))) (bdca (((1 . 1)))) (dbac (((1 . 1)))) (cbda (((1 . 1)))) (adbc (((1 . 1)))) (acdb (((1 . 1)))) (badc (((1 . 1)))) (cdab (((1 . 1)))) (dcba (((1 . 1)))) (cbad (((-1 . 1)))) (adcb (((-1 . 1)))) (bcda (((-1 . 1)))) (bdac (((-1 . 1)))) (cadb (((-1 . 1)))) (dabc (((-1 . 1)))) (cdba (((-1 . 1)))) (dcab (((-1 . 1))))),'complex)$ set!*representation('s4, '((id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1)))) (bacd (((1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2)))) (acbd (((1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (-1 . 2)))) (abdc (((1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2)))) (dbca (((1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (-1 . 2)))) (cabd (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2)))) (bcad (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (-1 . 2)))) (dacb (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (-1 . 2)))) (bdca (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2)))) (dbac (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2)))) (cbda (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (-1 . 2)))) (adbc (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (-1 . 2)))) (acdb (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2)))) (badc (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1)))) (cdab (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1)))) (dcba (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1)))) (cbad (((-1 . 1) (nil . 1)) ((nil . 1) (1 . 1)))) (adcb (((-1 . 1) (nil . 1)) ((nil . 1) (1 . 1)))) (bcda (((-1 . 1) (nil . 1)) ((nil . 1) (1 . 1)))) (bdac (((1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (-1 . 2)))) (cadb (((1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (-1 . 2)))) (dabc (((-1 . 1) (nil . 1)) ((nil . 1) (1 . 1)))) (cdba (((1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2)))) (dcab (((1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2))))),'complex)$ set!*representation('s4, '((id (((1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (1 . 1) (nil . 1)) ((nil . 1) (nil . 1) (1 . 1)))) (bacd (((nil . 1) (nil . 1) (-1 . 1)) ((nil . 1) (1 . 1) (nil . 1)) ((-1 . 1) (nil . 1) (nil . 1)))) (acbd (((nil . 1) (-1 . 1) (nil . 1)) ((-1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (nil . 1) (1 . 1)))) (abdc (((nil . 1) (nil . 1) (1 . 1)) ((nil . 1) (1 . 1) (nil . 1)) ((1 . 1) (nil . 1) (nil . 1)))) (dbca (((nil . 1) (1 . 1) (nil . 1)) ((1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (nil . 1) (1 . 1)))) (cabd (((nil . 1) (nil . 1) (-1 . 1)) ((-1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (1 . 1) (nil . 1)))) (bcad (((nil . 1) (-1 . 1) (nil . 1)) ((nil . 1) (nil . 1) (1 . 1)) ((-1 . 1) (nil . 1) (nil . 1)))) (dacb (((nil . 1) (1 . 1) (nil . 1)) ((nil . 1) (nil . 1) (-1 . 1)) ((-1 . 1) (nil . 1) (nil . 1)))) (bdca (((nil . 1) (nil . 1) (-1 . 1)) ((1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (-1 . 1) (nil . 1)))) (dbac (((nil . 1) (nil . 1) (1 . 1)) ((1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (1 . 1) (nil . 1)))) (cbda (((nil . 1) (1 . 1) (nil . 1)) ((nil . 1) (nil . 1) (1 . 1)) ((1 . 1) (nil . 1) (nil . 1)))) (adbc (((nil . 1) (-1 . 1) (nil . 1)) ((nil . 1) (nil . 1) (-1 . 1)) ((1 . 1) (nil . 1) (nil . 1)))) (acdb (((nil . 1) (nil . 1) (1 . 1)) ((-1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (-1 . 1) (nil . 1)))) (badc (((-1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (1 . 1) (nil . 1)) ((nil . 1) (nil . 1) (-1 . 1)))) (cdab (((1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (-1 . 1) (nil . 1)) ((nil . 1) (nil . 1) (-1 . 1)))) (dcba (((-1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (-1 . 1) (nil . 1)) ((nil . 1) (nil . 1) (1 . 1)))) (cbad (((1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (nil . 1) (1 . 1)) ((nil . 1) (1 . 1) (nil . 1)))) (adcb (((1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (nil . 1) (-1 . 1)) ((nil . 1) (-1 . 1) (nil . 1)))) (bcda (((-1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (nil . 1) (1 . 1)) ((nil . 1) (-1 . 1) (nil . 1)))) (bdac (((nil . 1) (-1 . 1) (nil . 1)) ((1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (nil . 1) (-1 . 1)))) (cadb (((nil . 1) (1 . 1) (nil . 1)) ((-1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (nil . 1) (-1 . 1)))) (dabc (((-1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (nil . 1) (-1 . 1)) ((nil . 1) (1 . 1) (nil . 1)))) (cdba (((nil . 1) (nil . 1) (-1 . 1)) ((nil . 1) (-1 . 1) (nil . 1)) ((1 . 1) (nil . 1) (nil . 1)))) (dcab (((nil . 1) (nil . 1) (1 . 1)) ((nil . 1) (-1 . 1) (nil . 1)) ((-1 . 1) (nil . 1) (nil . 1))))),'complex)$ set!*representation('s4, '((id (((1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (1 . 1) (nil . 1)) ((nil . 1) (nil . 1) (1 . 1)))) (bacd (((nil . 1) (nil . 1) (1 . 1)) ((nil . 1) (-1 . 1) (nil . 1)) ((1 . 1) (nil . 1) (nil . 1)))) (acbd (((nil . 1) (1 . 1) (nil . 1)) ((1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (nil . 1) (-1 . 1)))) (abdc (((nil . 1) (nil . 1) (-1 . 1)) ((nil . 1) (-1 . 1) (nil . 1)) ((-1 . 1) (nil . 1) (nil . 1)))) (dbca (((nil . 1) (-1 . 1) (nil . 1)) ((-1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (nil . 1) (-1 . 1)))) (cabd (((nil . 1) (nil . 1) (-1 . 1)) ((-1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (1 . 1) (nil . 1)))) (bcad (((nil . 1) (-1 . 1) (nil . 1)) ((nil . 1) (nil . 1) (1 . 1)) ((-1 . 1) (nil . 1) (nil . 1)))) (dacb (((nil . 1) (1 . 1) (nil . 1)) ((nil . 1) (nil . 1) (-1 . 1)) ((-1 . 1) (nil . 1) (nil . 1)))) (bdca (((nil . 1) (nil . 1) (-1 . 1)) ((1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (-1 . 1) (nil . 1)))) (dbac (((nil . 1) (nil . 1) (1 . 1)) ((1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (1 . 1) (nil . 1)))) (cbda (((nil . 1) (1 . 1) (nil . 1)) ((nil . 1) (nil . 1) (1 . 1)) ((1 . 1) (nil . 1) (nil . 1)))) (adbc (((nil . 1) (-1 . 1) (nil . 1)) ((nil . 1) (nil . 1) (-1 . 1)) ((1 . 1) (nil . 1) (nil . 1)))) (acdb (((nil . 1) (nil . 1) (1 . 1)) ((-1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (-1 . 1) (nil . 1)))) (badc (((-1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (1 . 1) (nil . 1)) ((nil . 1) (nil . 1) (-1 . 1)))) (cdab (((1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (-1 . 1) (nil . 1)) ((nil . 1) (nil . 1) (-1 . 1)))) (dcba (((-1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (-1 . 1) (nil . 1)) ((nil . 1) (nil . 1) (1 . 1)))) (cbad (((-1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (nil . 1) (-1 . 1)) ((nil . 1) (-1 . 1) (nil . 1)))) (adcb (((-1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (nil . 1) (1 . 1)) ((nil . 1) (1 . 1) (nil . 1)))) (bcda (((1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (nil . 1) (-1 . 1)) ((nil . 1) (1 . 1) (nil . 1)))) (bdac (((nil . 1) (1 . 1) (nil . 1)) ((-1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (nil . 1) (1 . 1)))) (cadb (((nil . 1) (-1 . 1) (nil . 1)) ((1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (nil . 1) (1 . 1)))) (dabc (((1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (nil . 1) (1 . 1)) ((nil . 1) (-1 . 1) (nil . 1)))) (cdba (((nil . 1) (nil . 1) (1 . 1)) ((nil . 1) (1 . 1) (nil . 1)) ((-1 . 1) (nil . 1) (nil . 1)))) (dcab (((nil . 1) (nil . 1) (-1 . 1)) ((nil . 1) (1 . 1) (nil . 1)) ((1 . 1) (nil . 1) (nil . 1))))),'complex)$ set!*representation('s4, '(realtype (id (((1 . 1)))) (bacd (((1 . 1)))) (acbd (((1 . 1)))) (abdc (((1 . 1)))) (dbca (((1 . 1)))) (cabd (((1 . 1)))) (bcad (((1 . 1)))) (dacb (((1 . 1)))) (bdca (((1 . 1)))) (dbac (((1 . 1)))) (cbda (((1 . 1)))) (adbc (((1 . 1)))) (acdb (((1 . 1)))) (badc (((1 . 1)))) (cdab (((1 . 1)))) (dcba (((1 . 1)))) (cbad (((1 . 1)))) (adcb (((1 . 1)))) (bcda (((1 . 1)))) (bdac (((1 . 1)))) (cadb (((1 . 1)))) (dabc (((1 . 1)))) (cdba (((1 . 1)))) (dcab (((1 . 1))))),'real)$ set!*representation('s4, '(realtype (id (((1 . 1)))) (bacd (((-1 . 1)))) (acbd (((-1 . 1)))) (abdc (((-1 . 1)))) (dbca (((-1 . 1)))) (cabd (((1 . 1)))) (bcad (((1 . 1)))) (dacb (((1 . 1)))) (bdca (((1 . 1)))) (dbac (((1 . 1)))) (cbda (((1 . 1)))) (adbc (((1 . 1)))) (acdb (((1 . 1)))) (badc (((1 . 1)))) (cdab (((1 . 1)))) (dcba (((1 . 1)))) (cbad (((-1 . 1)))) (adcb (((-1 . 1)))) (bcda (((-1 . 1)))) (bdac (((-1 . 1)))) (cadb (((-1 . 1)))) (dabc (((-1 . 1)))) (cdba (((-1 . 1)))) (dcab (((-1 . 1))))),'real)$ set!*representation('s4, '(realtype (id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1)))) (bacd (((1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2)))) (acbd (((1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (-1 . 2)))) (abdc (((1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2)))) (dbca (((1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (-1 . 2)))) (cabd (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2)))) (bcad (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (-1 . 2)))) (dacb (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (-1 . 2)))) (bdca (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2)))) (dbac (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2)))) (cbda (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (-1 . 2)))) (adbc (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (-1 . 2)))) (acdb (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2)))) (badc (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1)))) (cdab (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1)))) (dcba (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1)))) (cbad (((-1 . 1) (nil . 1)) ((nil . 1) (1 . 1)))) (adcb (((-1 . 1) (nil . 1)) ((nil . 1) (1 . 1)))) (bcda (((-1 . 1) (nil . 1)) ((nil . 1) (1 . 1)))) (bdac (((1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (-1 . 2)))) (cadb (((1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (-1 . 2)))) (dabc (((-1 . 1) (nil . 1)) ((nil . 1) (1 . 1)))) (cdba (((1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2)))) (dcab (((1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2))))),'real)$ set!*representation('s4, '(realtype (id (((1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (1 . 1) (nil . 1)) ((nil . 1) (nil . 1) (1 . 1)))) (bacd (((nil . 1) (nil . 1) (-1 . 1)) ((nil . 1) (1 . 1) (nil . 1)) ((-1 . 1) (nil . 1) (nil . 1)))) (acbd (((nil . 1) (-1 . 1) (nil . 1)) ((-1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (nil . 1) (1 . 1)))) (abdc (((nil . 1) (nil . 1) (1 . 1)) ((nil . 1) (1 . 1) (nil . 1)) ((1 . 1) (nil . 1) (nil . 1)))) (dbca (((nil . 1) (1 . 1) (nil . 1)) ((1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (nil . 1) (1 . 1)))) (cabd (((nil . 1) (nil . 1) (-1 . 1)) ((-1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (1 . 1) (nil . 1)))) (bcad (((nil . 1) (-1 . 1) (nil . 1)) ((nil . 1) (nil . 1) (1 . 1)) ((-1 . 1) (nil . 1) (nil . 1)))) (dacb (((nil . 1) (1 . 1) (nil . 1)) ((nil . 1) (nil . 1) (-1 . 1)) ((-1 . 1) (nil . 1) (nil . 1)))) (bdca (((nil . 1) (nil . 1) (-1 . 1)) ((1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (-1 . 1) (nil . 1)))) (dbac (((nil . 1) (nil . 1) (1 . 1)) ((1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (1 . 1) (nil . 1)))) (cbda (((nil . 1) (1 . 1) (nil . 1)) ((nil . 1) (nil . 1) (1 . 1)) ((1 . 1) (nil . 1) (nil . 1)))) (adbc (((nil . 1) (-1 . 1) (nil . 1)) ((nil . 1) (nil . 1) (-1 . 1)) ((1 . 1) (nil . 1) (nil . 1)))) (acdb (((nil . 1) (nil . 1) (1 . 1)) ((-1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (-1 . 1) (nil . 1)))) (badc (((-1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (1 . 1) (nil . 1)) ((nil . 1) (nil . 1) (-1 . 1)))) (cdab (((1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (-1 . 1) (nil . 1)) ((nil . 1) (nil . 1) (-1 . 1)))) (dcba (((-1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (-1 . 1) (nil . 1)) ((nil . 1) (nil . 1) (1 . 1)))) (cbad (((1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (nil . 1) (1 . 1)) ((nil . 1) (1 . 1) (nil . 1)))) (adcb (((1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (nil . 1) (-1 . 1)) ((nil . 1) (-1 . 1) (nil . 1)))) (bcda (((-1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (nil . 1) (1 . 1)) ((nil . 1) (-1 . 1) (nil . 1)))) (bdac (((nil . 1) (-1 . 1) (nil . 1)) ((1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (nil . 1) (-1 . 1)))) (cadb (((nil . 1) (1 . 1) (nil . 1)) ((-1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (nil . 1) (-1 . 1)))) (dabc (((-1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (nil . 1) (-1 . 1)) ((nil . 1) (1 . 1) (nil . 1)))) (cdba (((nil . 1) (nil . 1) (-1 . 1)) ((nil . 1) (-1 . 1) (nil . 1)) ((1 . 1) (nil . 1) (nil . 1)))) (dcab (((nil . 1) (nil . 1) (1 . 1)) ((nil . 1) (-1 . 1) (nil . 1)) ((-1 . 1) (nil . 1) (nil . 1))))),'real)$ set!*representation('s4, '(realtype (id (((1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (1 . 1) (nil . 1)) ((nil . 1) (nil . 1) (1 . 1)))) (bacd (((nil . 1) (nil . 1) (1 . 1)) ((nil . 1) (-1 . 1) (nil . 1)) ((1 . 1) (nil . 1) (nil . 1)))) (acbd (((nil . 1) (1 . 1) (nil . 1)) ((1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (nil . 1) (-1 . 1)))) (abdc (((nil . 1) (nil . 1) (-1 . 1)) ((nil . 1) (-1 . 1) (nil . 1)) ((-1 . 1) (nil . 1) (nil . 1)))) (dbca (((nil . 1) (-1 . 1) (nil . 1)) ((-1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (nil . 1) (-1 . 1)))) (cabd (((nil . 1) (nil . 1) (-1 . 1)) ((-1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (1 . 1) (nil . 1)))) (bcad (((nil . 1) (-1 . 1) (nil . 1)) ((nil . 1) (nil . 1) (1 . 1)) ((-1 . 1) (nil . 1) (nil . 1)))) (dacb (((nil . 1) (1 . 1) (nil . 1)) ((nil . 1) (nil . 1) (-1 . 1)) ((-1 . 1) (nil . 1) (nil . 1)))) (bdca (((nil . 1) (nil . 1) (-1 . 1)) ((1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (-1 . 1) (nil . 1)))) (dbac (((nil . 1) (nil . 1) (1 . 1)) ((1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (1 . 1) (nil . 1)))) (cbda (((nil . 1) (1 . 1) (nil . 1)) ((nil . 1) (nil . 1) (1 . 1)) ((1 . 1) (nil . 1) (nil . 1)))) (adbc (((nil . 1) (-1 . 1) (nil . 1)) ((nil . 1) (nil . 1) (-1 . 1)) ((1 . 1) (nil . 1) (nil . 1)))) (acdb (((nil . 1) (nil . 1) (1 . 1)) ((-1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (-1 . 1) (nil . 1)))) (badc (((-1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (1 . 1) (nil . 1)) ((nil . 1) (nil . 1) (-1 . 1)))) (cdab (((1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (-1 . 1) (nil . 1)) ((nil . 1) (nil . 1) (-1 . 1)))) (dcba (((-1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (-1 . 1) (nil . 1)) ((nil . 1) (nil . 1) (1 . 1)))) (cbad (((-1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (nil . 1) (-1 . 1)) ((nil . 1) (-1 . 1) (nil . 1)))) (adcb (((-1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (nil . 1) (1 . 1)) ((nil . 1) (1 . 1) (nil . 1)))) (bcda (((1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (nil . 1) (-1 . 1)) ((nil . 1) (1 . 1) (nil . 1)))) (bdac (((nil . 1) (1 . 1) (nil . 1)) ((-1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (nil . 1) (1 . 1)))) (cadb (((nil . 1) (-1 . 1) (nil . 1)) ((1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (nil . 1) (1 . 1)))) (dabc (((1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (nil . 1) (1 . 1)) ((nil . 1) (-1 . 1) (nil . 1)))) (cdba (((nil . 1) (nil . 1) (1 . 1)) ((nil . 1) (1 . 1) (nil . 1)) ((-1 . 1) (nil . 1) (nil . 1)))) (dcab (((nil . 1) (nil . 1) (-1 . 1)) ((nil . 1) (1 . 1) (nil . 1)) ((1 . 1) (nil . 1) (nil . 1))))),'real)$ set!*available 's4$ set!*elems!*group('a4, '(id ta4 t2a4 xa4 ya4 za4 txa4 tya4 tza4 t2xa4 t2ya4 t2za4))$ set!*generators('a4,'(ta4 xa4 ya4 za4))$ set!*relations('a4, '(((za4) (ta4 xa4 ta4 ta4)) ((ya4) (ta4 za4 ta4 ta4)) ((xa4) (ta4 ya4 ta4 ta4)) ((ta4 ta4 ta4) (id)) ((xa4 xa4) (id)) ((ya4 ya4) (id)) ((za4 za4) (id)) ((xa4 ya4) (za4))))$ set!*grouptable('a4, '((grouptable id ta4 t2a4 xa4 ya4 za4 txa4 tya4 tza4 t2xa4 t2ya4 t2za4) (id id ta4 t2a4 xa4 ya4 za4 txa4 tya4 tza4 t2xa4 t2ya4 t2za4) (ta4 ta4 t2a4 id txa4 tya4 tza4 t2xa4 t2ya4 t2za4 xa4 ya4 za4) (t2a4 t2a4 id ta4 t2xa4 t2ya4 t2za4 xa4 ya4 za4 txa4 tya4 tza4) (xa4 xa4 tya4 t2za4 id za4 ya4 tza4 ta4 txa4 t2ya4 t2xa4 t2a4) (ya4 ya4 tza4 t2xa4 za4 id xa4 tya4 txa4 ta4 t2a4 t2za4 t2ya4) (za4 za4 txa4 t2ya4 ya4 xa4 id ta4 tza4 tya4 t2za4 t2a4 t2xa4) (txa4 txa4 t2ya4 za4 ta4 tza4 tya4 t2za4 t2a4 t2xa4 ya4 xa4 id) (tya4 tya4 t2za4 xa4 tza4 ta4 txa4 t2ya4 t2xa4 t2a4 id za4 ya4) (tza4 tza4 t2xa4 ya4 tya4 txa4 ta4 t2a4 t2za4 t2ya4 za4 id xa4) (t2xa4 t2xa4 ya4 tza4 t2a4 t2za4 t2ya4 za4 id xa4 tya4 txa4 ta4) (t2ya4 t2ya4 za4 txa4 t2za4 t2a4 t2xa4 ya4 xa4 id ta4 tza4 tya4) (t2za4 t2za4 xa4 tya4 t2ya4 t2xa4 t2a4 id za4 ya4 tza4 ta4 txa4)))$ set!*inverse('a4, '((id ta4 t2a4 xa4 ya4 za4 txa4 tya4 tza4 t2xa4 t2ya4 t2za4) (id t2a4 ta4 xa4 ya4 za4 t2za4 t2xa4 t2ya4 tya4 tza4 txa4) ))$ set!*elemasgen('a4, '(((ta4) (ta4)) ((t2a4) (ta4 ta4)) ((xa4) (xa4)) ((ya4) (ya4)) ((za4) (za4)) ((txa4) (ta4 xa4)) ((tya4) (ta4 ya4)) ((tza4) (ta4 za4)) ((t2xa4) (ta4 ta4 xa4)) ((t2ya4) (ta4 ta4 ya4)) ((t2za4) (ta4 ta4 za4))))$ set!*group('a4, '((id) (txa4 ta4 tza4 tya4) (t2za4 t2a4 t2ya4 t2xa4) (ya4 xa4 za4)))$ set!*representation('a4, '((id (((1 . 1)))) (ta4 (((1 . 1)))) (t2a4 (((1 . 1)))) (xa4 (((1 . 1)))) (ya4 (((1 . 1)))) (za4 (((1 . 1)))) (txa4 (((1 . 1)))) (tya4 (((1 . 1)))) (tza4 (((1 . 1)))) (t2xa4 (((1 . 1)))) (t2ya4 (((1 . 1)))) (t2za4 (((1 . 1))))),'complex)$ set!*representation('a4, '((id (((1 . 1)))) (ta4 (((((((expt 3 (quotient 1 2)) . 1) ((i . 1) . 1)) . -1) . 2)))) (t2a4 (((((((expt 3 (quotient 1 2)) . 1)((i . 1) . -1)) . -1) . 2)))) (xa4 (((1 . 1)))) (ya4 (((1 . 1)))) (za4 (((1 . 1)))) (txa4 (((((((expt 3 (quotient 1 2)) . 1) ((i . 1) . 1)) . -1) . 2)))) (tya4 (((((((expt 3 (quotient 1 2)) . 1) ((i . 1) . 1)) . -1) . 2)))) (tza4 (((((((expt 3 (quotient 1 2)) . 1) ((i . 1) . 1)) . -1) . 2)))) (t2xa4 (((((((expt 3 (quotient 1 2)) . 1)((i . 1) . -1)) . -1) . 2)))) (t2ya4 (((((((expt 3 (quotient 1 2)) . 1)((i . 1) . -1)) . -1) . 2)))) (t2za4 (((((((expt 3 (quotient 1 2)) . 1) ((i . 1) . -1)) . -1) . 2))))),'complex)$ set!*representation('a4, '((id (((1 . 1)))) (ta4 (((((((expt 3 (quotient 1 2)) . 1)((i . 1) . -1)) . -1) . 2)))) (t2a4 (((((((expt 3 (quotient 1 2)) . 1) ((i . 1) . 1)) . -1) . 2)))) (xa4 (((1 . 1)))) (ya4 (((1 . 1)))) (za4 (((1 . 1)))) (txa4 (((((((expt 3 (quotient 1 2)) . 1)((i . 1) . -1)) . -1) . 2)))) (tya4 (((((((expt 3 (quotient 1 2)) . 1)((i . 1) . -1)) . -1) . 2)))) (tza4 (((((((expt 3 (quotient 1 2)) . 1)((i . 1) . -1)) . -1) . 2)))) (t2xa4 (((((((expt 3 (quotient 1 2)) . 1) ((i . 1) . 1)) . -1) . 2)))) (t2ya4 (((((((expt 3 (quotient 1 2)) . 1) ((i . 1) . 1)) . -1) . 2)))) (t2za4 (((((((expt 3 (quotient 1 2)) . 1) ((i . 1) . 1)) . -1) . 2))))),'complex)$ set!*representation('a4, '((id (((1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (1 . 1) (nil . 1)) ((nil . 1) (nil . 1) (1 . 1)))) (ta4 (((nil . 1) (nil . 1) (-1 . 1)) ((-1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (1 . 1) (nil . 1)))) (t2a4 (((nil . 1) (-1 . 1) (nil . 1)) ((nil . 1) (nil . 1) (1 . 1)) ((-1 . 1) (nil . 1) (nil . 1)))) (xa4 (((-1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (1 . 1) (nil . 1)) ((nil . 1) (nil . 1) (-1 . 1)))) (ya4 (((1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (-1 . 1) (nil . 1)) ((nil . 1) (nil . 1) (-1 . 1)))) (za4 (((-1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (-1 . 1) (nil . 1)) ((nil . 1) (nil . 1) (1 . 1)))) (txa4 (((nil . 1) (nil . 1) (1 . 1)) ((1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (1 . 1) (nil . 1)))) (tya4 (((nil . 1) (nil . 1) (1 . 1)) ((-1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (-1 . 1) (nil . 1)))) (tza4 (((nil . 1) (nil . 1) (-1 . 1)) ((1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (-1 . 1) (nil . 1)))) (t2xa4 (((nil . 1) (-1 . 1) (nil . 1)) ((nil . 1) (nil . 1) (-1 . 1)) ((1 . 1) (nil . 1) (nil . 1)))) (t2ya4 (((nil . 1) (1 . 1) (nil . 1)) ((nil . 1) (nil . 1) (-1 . 1)) ((-1 . 1) (nil . 1) (nil . 1)))) (t2za4 (((nil . 1) (1 . 1) (nil . 1)) ((nil . 1) (nil . 1) (1 . 1)) ((1 . 1) (nil . 1) (nil . 1))))),'complex)$ set!*representation('a4, '(realtype (id (((1 . 1)))) (ta4 (((1 . 1)))) (t2a4 (((1 . 1)))) (xa4 (((1 . 1)))) (ya4 (((1 . 1)))) (za4 (((1 . 1)))) (txa4 (((1 . 1)))) (tya4 (((1 . 1)))) (tza4 (((1 . 1)))) (t2xa4 (((1 . 1)))) (t2ya4 (((1 . 1)))) (t2za4 (((1 . 1))))),'real)$ set!*representation('a4, '(complextype (id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1)))) (ta4 (((-1 . 2)(((((expt 3 (quotient 1 2)) . 1) . 1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (-1 . 2)))) (t2a4 (((-1 . 2)(((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2)))) (xa4 (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1)))) (ya4 (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1)))) (za4 (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1)))) (txa4 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (-1 . 2)))) (tya4 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (-1 . 2)))) (tza4 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (-1 . 2)))) (t2xa4 (((-1 . 2)(((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2)))) (t2ya4 (((-1 . 2)(((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2)))) (t2za4 (((-1 . 2)(((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2))))),'real)$ set!*representation('a4, '(realtype (id (((1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (1 . 1) (nil . 1)) ((nil . 1) (nil . 1) (1 . 1)))) (ta4 (((nil . 1) (nil . 1) (-1 . 1)) ((-1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (1 . 1) (nil . 1)))) (t2a4 (((nil . 1) (-1 . 1) (nil . 1)) ((nil . 1) (nil . 1) (1 . 1)) ((-1 . 1) (nil . 1) (nil . 1)))) (xa4 (((-1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (1 . 1) (nil . 1)) ((nil . 1) (nil . 1) (-1 . 1)))) (ya4 (((1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (-1 . 1) (nil . 1)) ((nil . 1) (nil . 1) (-1 . 1)))) (za4 (((-1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (-1 . 1) (nil . 1)) ((nil . 1) (nil . 1) (1 . 1)))) (txa4 (((nil . 1) (nil . 1) (1 . 1)) ((1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (1 . 1) (nil . 1)))) (tya4 (((nil . 1) (nil . 1) (1 . 1)) ((-1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (-1 . 1) (nil . 1)))) (tza4 (((nil . 1) (nil . 1) (-1 . 1)) ((1 . 1) (nil . 1) (nil . 1)) ((nil . 1) (-1 . 1) (nil . 1)))) (t2xa4 (((nil . 1) (-1 . 1) (nil . 1)) ((nil . 1) (nil . 1) (-1 . 1)) ((1 . 1) (nil . 1) (nil . 1)))) (t2ya4 (((nil . 1) (1 . 1) (nil . 1)) ((nil . 1) (nil . 1) (-1 . 1)) ((-1 . 1) (nil . 1) (nil . 1)))) (t2za4 (((nil . 1) (1 . 1) (nil . 1)) ((nil . 1) (nil . 1) (1 . 1)) ((1 . 1) (nil . 1) (nil . 1))))),'real)$ set!*available 'a4$ endmodule; end;