Artifact 97a646b26c0bae9ce22bf3c77494ae6bbb9bf9f2566c8c08c064a93b47778a35:
- Executable file
r38/log/polydiv.rlg
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 6037) [annotate] [blame] [check-ins using] [more...]
Tue Apr 15 00:32:21 2008 run on win32 % polydiv.tst -*- REDUCE -*- % Test and demonstration file for enhanced polynomial division % file polydiv.red. % F.J.Wright@Maths.QMW.ac.uk, 7 Nov 1995. % The example from "Computer Algebra" by Davenport, Siret & Tournier, % first edition, section 2.3.3. % First check that remainder still works as before. % Compute the gcd of the polynomials a and b by Euclid's algorithm: a := aa := x^8 + x^6 - 3x^4 - 3x^3 + 8x^2 + 2x - 5; 8 6 4 3 2 a := aa := x + x - 3*x - 3*x + 8*x + 2*x - 5 b := bb := 3x^6 + 5x^4 - 4x^2 - 9x + 21; 6 4 2 b := bb := 3*x + 5*x - 4*x - 9*x + 21 on rational; off allfac; c := remainder(a, b); 5 4 1 2 1 c := - ---*x + ---*x - --- 9 9 3 a := b$ b := c$ c := remainder(a, b); 117 2 441 c := - -----*x - 9*x + ----- 25 25 a := b$ b := c$ c := remainder(a, b); 233150 102500 c := --------*x - -------- 19773 6591 a := b$ b := c$ c := remainder(a, b); 1288744821 c := - ------------ 543589225 a := b$ b := c$ c := remainder(a, b); c := 0 off rational; % Repeat using pseudo-remainders, to avoid rational arithmetic: a := aa; 8 6 4 3 2 a := x + x - 3*x - 3*x + 8*x + 2*x - 5 b := bb; 6 4 2 b := 3*x + 5*x - 4*x - 9*x + 21 c := pseudo_remainder(a, b); 4 2 c := - 15*x + 3*x - 9 a := b$ b := c$ c := pseudo_remainder(a, b); 2 c := 15795*x + 30375*x - 59535 a := b$ b := c$ c := pseudo_remainder(a, b); c := 1254542875143750*x - 1654608338437500 a := b$ b := c$ c := pseudo_remainder(a, b); c := 12593338795500743100931141992187500 a := b$ b := c$ c := pseudo_remainder(a, b); c := 0 % Example from Chris Herssens <herc@sulu.luc.ac.be> % involving algebraic numbers in the coefficient ring % (for which naive pseudo-division fails in REDUCE): factor x; a:=8*(15*sqrt(2)*x**3 + 18*sqrt(2)*x**2 + 10*sqrt(2)*x + 12*sqrt(2) - 5*x**4 - 6*x**3 - 30*x**2 - 36*x); 4 3 2 a := - 40*x + x *(120*sqrt(2) - 48) + x *(144*sqrt(2) - 240) + x*(80*sqrt(2) - 288) + 96*sqrt(2) b:= - 16320*sqrt(2)*x**3 - 45801*sqrt(2)*x**2 - 50670*sqrt(2)*x - 26534*sqrt(2) + 15892*x**3 + 70920*x**2 + 86352*x + 24780; 3 2 b := x *( - 16320*sqrt(2) + 15892) + x *( - 45801*sqrt(2) + 70920) + x*( - 50670*sqrt(2) + 86352) - 26534*sqrt(2) + 24780 pseudo_remainder(a, b, x); 2 3/2 x *( - 51343372800*2 + 72663731640*2 + 106394745600*sqrt(2) - 152808065280) + 3/2 x*( - 77924736000*2 + 111722451600*2 + 167518488000*sqrt(2) - 236076547200) 3/2 - 26395315200*2 + 21508247760*2 + 58006274400*sqrt(2) - 51393323520 % Note: We must specify the division variable even though the % polynomials are apparently univariate: pseudo_remainder(a, b); *** Main division variable selected is 2**(1/2) 7 6 5 4 3 2 652800*x + 708360*x - 2656800*x - 2660160*x + 4017600*x + 3676320*x - 2630400*x - 2378880 % Confirm that quotient * b + remainder = constant * a: pseudo_divide(a, b, x); {x*(652800*sqrt(2) - 635680) - 1958400*2 + 858360*sqrt(2) + 2073984, 2 3/2 x *( - 51343372800*2 + 72663731640*2 + 106394745600*sqrt(2) - 152808065280) + x 3/2 *( - 77924736000*2 + 111722451600*2 + 167518488000*sqrt(2) - 236076547200) 3/2 - 26395315200*2 + 21508247760*2 + 58006274400*sqrt(2) - 51393323520} first ws * b + second ws; 4 x *(20748595200*sqrt(2) - 31409618560) 3 + x *(119127169920*sqrt(2) - 162183113472) 2 + x *(237566198016*sqrt(2) - 337847596800) + x*(212209122560*sqrt(2) - 309143634432) + 75383084544*sqrt(2) - 99593256960 ws / a; 4 3 (x *(2593574400*sqrt(2) - 3926202320) + x *(14890896240*sqrt(2) - 20272889184) 2 + x *(29695774752*sqrt(2) - 42230949600) + x*(26526140320*sqrt(2) - 38642954304) + 9422885568*sqrt(2) - 12449157120)/( 4 3 2 - 5*x + x *(15*sqrt(2) - 6) + x *(18*sqrt(2) - 30) + x*(10*sqrt(2) - 36) + 12*sqrt(2)) % is this constant? on rationalize; ws; - 518714880*sqrt(2) + 785240464 % yes, it is constant off rationalize; on allfac; remfac x; procedure test_pseudo_division(a, b, x); begin scalar qr, L; qr := pseudo_divide(a, b, x); L := lcof(b,x); %% For versions of REDUCE prior to 3.6 use: %% L := if b freeof x then b else lcof(b,x); if first qr * b + second qr = L^(deg(a,x)-deg(b,x)+1) * a then write "Pseudo-division OK" else write "Pseudo-division failed" end; test_pseudo_division a := 5x^4 + 4x^3 + 3x^2 + 2x + 1; 4 3 2 a := 5*x + 4*x + 3*x + 2*x + 1 test_pseudo_division(a, x, x); Pseudo-division OK test_pseudo_division(a, x^3, x); Pseudo-division OK test_pseudo_division(a, x^5, x); Pseudo-division OK test_pseudo_division(a, x^3 + x, x); Pseudo-division OK test_pseudo_division(a, 0, x); ***** Zero divisor % intentional error! test_pseudo_division(a, 1, x); Pseudo-division OK test_pseudo_division(5x^3 + 7y^2, 2x - y, x); Pseudo-division OK test_pseudo_division(5x^3 + 7y^2, 2x - y, y); Pseudo-division OK end; Time for test: 9 ms