Artifact 9562c17b7d1b24353999fc50115c5bef870b61322221830005dff91cd18377bc:
- Executable file
r37/log/conlaw.rlg
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 32911) [annotate] [blame] [check-ins using] [more...]
Sun Aug 18 17:32:46 2002 run on Windows off echo, dfprint$ If you want to see more details of the following calculation then change in the file `conlaw.tst' the line lisp(print_:=nil)$ into lisp(print_:=10)$ ************************************************************************** The following example calculates all conservation laws of the KdV- equation with a characteristic function of order not higher than two -------------------------------------------------------------------------- This is CONLAW3 - a program for calculating conservation laws of DEs The DE under investigation is : df(u,t)=df(u,x,3) + df(u,x)*u for the function(s): {u} ====================================================== Currently conservation laws with characteristic function(s) of order 0 are determined ====================================================== Conservation law: ( 1 ) * ( df(u,t) - df(u,x,3) - df(u,x)*u ) = df( u, t ) + 2 - 2*df(u,x,2) - u df( ---------------------, x ) 2 ====================================================== Conservation law: ( t*u + x ) * ( df(u,t) - df(u,x,3) - df(u,x)*u ) = 2 t*u + 2*u*x df( --------------, t ) 2 + 2 3 df( ( - 6*df(u,x,2)*t*u - 6*df(u,x,2)*x + 3*df(u,x) *t + 6*df(u,x) - 2*t*u 2 - 3*u *x)/6, x ) ====================================================== Conservation law: ( u ) * ( df(u,t) - df(u,x,3) - df(u,x)*u ) = 2 u df( ----, t ) 2 + 2 3 - 6*df(u,x,2)*u + 3*df(u,x) - 2*u df( --------------------------------------, x ) 6 ====================================================== Currently conservation laws with characteristic function(s) of order 1 are determined ====================================================== There is no conservation law of this order. ====================================================== Currently conservation laws with characteristic function(s) of order 2 are determined ====================================================== Conservation law: 2 ( - 2*df(u,x,2) - u ) * ( df(u,t) - df(u,x,3) - df(u,x)*u ) = 2 3 3*df(u,x) - u df( -----------------, t ) 3 + 2 2 4 - 8*df(u,t)*df(u,x) + 4*df(u,x,2) + 4*df(u,x,2)*u + u df( -----------------------------------------------------------, x ) 4 ====================================================== ************************************************************************** The next example demonstrates that one can specify an ansatz for the characteristic function of one or more equations of the PDE-system. In this example all conservation laws of the wave equation which is written as a first order system are calculated such that the characteristic functions of the first of both equations is proportional to df(u,x,2). (This will include zero as it is a multiple of df(u,x,2) too.) -------------------------------------------------------------------------- This is CONLAW2 - a program for calculating conservation laws of DEs The DEs under investigation are : df(u,t)=df(v,x) df(v,t)=df(u,x) for the function(s): {u,v} ====================================================== A special ansatz of order 2 for the characteristic function(s) is investigated. Conservation law: (df(u,x,2)) * (df(u,t) - df(v,x)) + (df(v,x,2)) * ( - df(u,x) + df(v,t)) = 2 2 - df(u,x) - df(v,x) df( ------------------------, t ) 2 + df( df(u,t)*df(u,x) - df(u,x)*df(v,x) + df(v,t)*df(v,x), x ) ====================================================== ************************************************************************** For the Burgers equation the following example finds all conservation laws of zero'th order in the characteristic function up to the solution of the linear heat equation. This is an example for what happens when not all conditions could be solved, but it is also an example which shows that not only characteristic functions of polynomial or rational form can be found. -------------------------------------------------------------------------- This is CONLAW1 - a program for calculating conservation laws of DEs The DE under investigation is : 2 2*df(u,x,2) + df(u,x) df(u,t)=------------------------ 2 for the function(s): {u} ====================================================== Currently conservation laws with a conserved density of order 0 are determined ====================================================== The function c_132(x,t) is not constant! There are remaining conditions: {df(c_132,t) + df(c_132,x,2)} for the functions: c_132(x,t) Corresponding CLs might not be shown below as they could be of too low order. ====================================================== Conservation law: 2 u/2 2*df(u,t) - 2*df(u,x,2) - df(u,x) ( e *c_132 ) * ( ------------------------------------ ) 2 = u/2 df( 2*e *c_132, t ) + u/2 u/2 df( 2*e *df(c_132,x) - e *df(u,x)*c_132, x ) ====================================================== ************************************************************************** In this example all conservation laws of the Ito system are calculated that have a conserved density of order not higher than one. This is a further example of non-polynomial conservation laws. -------------------------------------------------------------------------- This is CONLAW1 - a program for calculating conservation laws of DEs The DEs under investigation are : df(u,t)=df(u,x,3) + 6*df(u,x)*u + 2*df(v,x)*v df(v,t)=2*df(u,x)*v + 2*df(v,x)*u for the function(s): {u,v} ====================================================== Currently conservation laws with a conserved density of order 0 are determined ====================================================== Conservation law: ( 0 ) * ( - 2*df(u,x)*v + df(v,t) - 2*df(v,x)*u ) + ( 1 ) * ( df(u,t) - df(u,x,3) - 6*df(u,x)*u - 2*df(v,x)*v ) = df( u, t ) + 2 2 df( - df(u,x,2) - 3*u - v , x ) ====================================================== Conservation law: ( 2*v ) * ( - 2*df(u,x)*v + df(v,t) - 2*df(v,x)*u ) + ( 2*u ) * ( df(u,t) - df(u,x,3) - 6*df(u,x)*u - 2*df(v,x)*v ) = 2 2 df( u + v , t ) + 2 3 2 df( - 2*df(u,x,2)*u + df(u,x) - 4*u - 4*u*v , x ) ====================================================== Conservation law: ( -1 ) * ( - 2*df(u,x)*v + df(v,t) - 2*df(v,x)*u ) + ( 0 ) * ( df(u,t) - df(u,x,3) - 6*df(u,x)*u - 2*df(v,x)*v ) = df( - v, t ) + df( 2*u*v, x ) ====================================================== Currently conservation laws with a conserved density of order 1 are determined ====================================================== Conservation law: 2 2 - 2*df(v,x,2)*v + 3*df(v,x) + 4*u*v ( ---------------------------------------- ) * ( - 2*df(u,x)*v + df(v,t) 4 v - 2*df(v,x)*u ) + - 4 ( ------ ) * ( df(u,t) - df(u,x,3) - 6*df(u,x)*u - 2*df(v,x)*v ) v = 2 2 df(v,x) - 4*u*v df( -------------------, t ) 3 v + 2 2 df( (4*df(u,x,2)*v + 4*df(u,x)*df(v,x)*v - 2*df(v,t)*df(v,x) + 2*df(v,x) *u 2 2 4 3 + 8*u *v + 8*v )/v , x ) ====================================================== Conservation law: ( - 4*u*v ) * ( - 2*df(u,x)*v + df(v,t) - 2*df(v,x)*u ) + 2 2 ( - 2*df(u,x,2) - 6*u - 2*v ) * ( df(u,t) - df(u,x,3) - 6*df(u,x)*u - 2*df(v,x)*v ) = 2 3 2 df( df(u,x) - 2*u - 2*u*v , t ) + 2 2 2 4 df( - 2*df(u,t)*df(u,x) + df(u,x,2) + 6*df(u,x,2)*u + 2*df(u,x,2)*v + 9*u 2 2 4 + 10*u *v + v , x ) ====================================================== ************************************************************************** In the next example the 5th order Korteweg - de Vries equation is investigated concerning conservation laws of order 0 and 1 in the conserved density P_t. Parameters a,b,c in the PDE are determined such that conservation laws exist. This complicates the problem by making it non-linear with a number of cases to be considered. Some of the subcases below can be combined to reduce their number which currently is not done automatically. -------------------------------------------------------------------------- This is CONLAW1 - a program for calculating conservation laws of DEs The DE under investigation is : 2 df(u,t)= - df(u,x,5) - df(u,x,3)*c*u - df(u,x,2)*df(u,x)*b - df(u,x)*a*u for the function(s): {u} ====================================================== Currently conservation laws with a conserved density of order 0 are determined ====================================================== Conservation law: b c=---, 2 ( - 4*u ) * ( (2*df(u,t) + 2*df(u,x,5) + df(u,x,3)*b*u + 2*df(u,x,2)*df(u,x)*b 2 + 2*df(u,x)*a*u )/2 ) = 2 df( - 2*u , t ) + 2 2 df( - 4*df(u,x,4)*u + 4*df(u,x,3)*df(u,x) - 2*df(u,x,2) - 2*df(u,x,2)*b*u 4 - a*u , x ) ====================================================== Conservation law: b c=---, 2 ( -12 ) * ( (2*df(u,t) + 2*df(u,x,5) + df(u,x,3)*b*u + 2*df(u,x,2)*df(u,x)*b 2 + 2*df(u,x)*a*u )/2 ) = df( - 12*u, t ) + 2 3 df( - 12*df(u,x,4) - 6*df(u,x,2)*b*u - 3*df(u,x) *b - 4*a*u , x ) ====================================================== Conservation law: ( -6 ) * ( df(u,t) + df(u,x,5) + df(u,x,3)*c*u + df(u,x,2)*df(u,x)*b 2 + df(u,x)*a*u ) = df( - 6*u, t ) + 2 2 3 df( - 6*df(u,x,4) - 6*df(u,x,2)*c*u - 3*df(u,x) *b + 3*df(u,x) *c - 2*a*u , x ) ====================================================== The function c_320(x,t) is not constant! The function c_328(t) is not constant! There are remaining conditions: {df(c_320,t) + df(c_320,x,5) - c_328} for the functions: c_328(t), c_320(x,t) Corresponding CLs might not be shown below as they could be of too low order. ====================================================== Conservation law: a=0, b=0, c=0, ( - 2*u ) * ( df(u,t) + df(u,x,5) ) = 2 df( - u , t ) + 2 df( - 2*df(u,x,4)*u + 2*df(u,x,3)*df(u,x) - df(u,x,2) , x ) ====================================================== Conservation law: a=0, b=0, c=0, ( - df(c_320,x) ) * ( df(u,t) + df(u,x,5) ) = df( - df(c_320,x)*u, t ) + df( df(c_320,t)*u + df(c_320,x,4)*df(u,x) - df(c_320,x,3)*df(u,x,2) + df(c_320,x,2)*df(u,x,3) - df(c_320,x)*df(u,x,4) + c_328*u, x ) ====================================================== The function c_303(x,t) is not constant! The function c_313(t) is not constant! There are remaining conditions: {df(c_303,t) + df(c_303,x,5) - c_313} for the functions: c_313(t), c_303(x,t) Corresponding CLs might not be shown below as they could be of too low order. ====================================================== Conservation law: a=0, b=0, c=0, ( - df(c_303,x) ) * ( df(u,t) + df(u,x,5) ) = df( - df(c_303,x)*u, t ) + df( df(c_303,t)*u + df(c_303,x,4)*df(u,x) - df(c_303,x,3)*df(u,x,2) + df(c_303,x,2)*df(u,x,3) - df(c_303,x)*df(u,x,4) + c_313*u, x ) ====================================================== Conservation law: a=0, b c=---, 3 2 - 3*x ( --------- ) * ( b 3*df(u,t) + 3*df(u,x,5) + df(u,x,3)*b*u + 3*df(u,x,2)*df(u,x)*b ----------------------------------------------------------------- ) 3 = 2 - 3*u*x df( -----------, t ) b + 2 2 df( ( - 3*df(u,x,4)*x + 6*df(u,x,3)*x - df(u,x,2)*b*u*x - 6*df(u,x,2) 2 2 2 - df(u,x) *b*x + 2*df(u,x)*b*u*x - b*u )/b, x ) ====================================================== Conservation law: a=0, b c=---, 3 3*df(u,t) + 3*df(u,x,5) + df(u,x,3)*b*u + 3*df(u,x,2)*df(u,x)*b ( - 3*x ) * ( ----------------------------------------------------------------- 3 ) = df( - 3*u*x, t ) + 2 df( - 3*df(u,x,4)*x + 3*df(u,x,3) - df(u,x,2)*b*u*x - df(u,x) *b*x + df(u,x)*b*u, x ) ====================================================== Conservation law: a=0, b c=---, 3 3*df(u,t) + 3*df(u,x,5) + df(u,x,3)*b*u + 3*df(u,x,2)*df(u,x)*b ( -3 ) * ( ----------------------------------------------------------------- ) 3 = df( - 3*u, t ) + 2 df( - 3*df(u,x,4) - df(u,x,2)*b*u - df(u,x) *b, x ) ====================================================== Currently conservation laws with a conserved density of order 1 are determined ====================================================== The function c_408(t) is not constant! The function c_372(t,x) is not constant! There are remaining conditions: {30*df(c_372,t) + 30*df(c_372,x,5) - c_408} for the functions: c_372(t,x), c_408(t) Corresponding CLs might not be shown below as they could be of too low order. ====================================================== Conservation law: a=0, b=0, c=0, ( - 2*df(u,x,2) ) * ( df(u,t) + df(u,x,5) ) = 2 df( df(u,x) , t ) + 2 df( - 2*df(u,t)*df(u,x) - 2*df(u,x,4)*df(u,x,2) + df(u,x,3) 2 2 2 - 2*df(u,x,3)*df(u,x)*c*u - 2*df(u,x,2)*df(u,x) *b - 2*df(u,x) *a*u , x ) ====================================================== Conservation law: a=0, b c=---, 3 2 ( - 18*df(u,x,2) - 3*b*u ) * ( 3*df(u,t) + 3*df(u,x,5) + df(u,x,3)*b*u + 3*df(u,x,2)*df(u,x)*b ----------------------------------------------------------------- ) 3 = 2 3 df( 9*df(u,x) - b*u , t ) + 2 df( - 18*df(u,t)*df(u,x) - 18*df(u,x,4)*df(u,x,2) - 3*df(u,x,4)*b*u 2 + 9*df(u,x,3) + 12*df(u,x,3)*df(u,x)*b*u - 18*df(u,x,3)*df(u,x)*c*u 2 2 2 3 - 6*df(u,x,2) *b*u - 6*df(u,x,2)*df(u,x) *b - df(u,x,2)*b *u 2 2 - 18*df(u,x) *a*u , x ) ====================================================== Conservation law: a=0, b c=---, 3 3*df(u,t) + 3*df(u,x,5) + df(u,x,3)*b*u + 3*df(u,x,2)*df(u,x)*b ( 6*x ) * ( ----------------------------------------------------------------- ) 3 = 2 df( - 3*df(u,x)*x , t ) + 2 2 2 df( 3*df(u,t)*x + 6*df(u,x,4)*x - df(u,x,3)*b*u*x + 3*df(u,x,3)*c*u*x 2 2 2 - 6*df(u,x,3) + 2*df(u,x,2)*b*u*x + 2*df(u,x) *b*x + 3*df(u,x)*a*u *x - 2*df(u,x)*b*u, x ) ====================================================== Conservation law: a=0, b c=---, 3 2 9*x 3*df(u,t) + 3*df(u,x,5) + df(u,x,3)*b*u + 3*df(u,x,2)*df(u,x)*b ( ------ ) * ( ----------------------------------------------------------------- b 3 ) = 3 - 3*df(u,x)*x df( -----------------, t ) b + 3 2 3 3 df( (3*df(u,t)*x + 9*df(u,x,4)*x - df(u,x,3)*b*u*x + 3*df(u,x,3)*c*u*x 2 2 2 - 18*df(u,x,3)*x + 3*df(u,x,2)*b*u*x + 18*df(u,x,2) + 3*df(u,x) *b*x 2 3 2 + 3*df(u,x)*a*u *x - 6*df(u,x)*b*u*x + 3*b*u )/b, x ) ====================================================== Conservation law: 2 2 - 2*b + 7*b*c - 3*c a=------------------------, 10 2 2 ( - 1500*df(u,x,2) - 300*b*u + 150*c*u ) * ( (10*df(u,t) + 10*df(u,x,5) 2 2 + 10*df(u,x,3)*c*u + 10*df(u,x,2)*df(u,x)*b - 2*df(u,x)*b *u 2 2 2 + 7*df(u,x)*b*c*u - 3*df(u,x)*c *u )/10 ) = 2 3 3 df( 750*df(u,x) - 100*b*u + 50*c*u , t ) + 2 df( - 1500*df(u,t)*df(u,x) - 1500*df(u,x,4)*df(u,x,2) - 300*df(u,x,4)*b*u 2 2 + 150*df(u,x,4)*c*u + 750*df(u,x,3) + 600*df(u,x,3)*df(u,x)*b*u 2 2 - 300*df(u,x,3)*df(u,x)*c*u - 300*df(u,x,2) *b*u - 600*df(u,x,2) *c*u 2 2 3 - 600*df(u,x,2)*df(u,x) *b + 300*df(u,x,2)*df(u,x) *c - 300*df(u,x,2)*b*c*u 2 3 2 2 2 2 2 + 150*df(u,x,2)*c *u - 1500*df(u,x) *a*u - 300*df(u,x) *b *u 2 2 2 2 2 3 5 2 5 + 1050*df(u,x) *b*c*u - 450*df(u,x) *c *u + 12*b *u - 48*b *c*u 2 5 3 5 + 39*b*c *u - 9*c *u , x ) ====================================================== Conservation law: 2 2 - 2*b + 7*b*c - 3*c a=------------------------, 10 2 2 2 ( ( - 1500*df(u,x,2)*b*t + 4500*df(u,x,2)*c*t - 300*b *t*u + 1050*b*c*t*u 2 2 - 450*c *t*u - 1500*x)/(b - 3*c) ) * ( (10*df(u,t) + 10*df(u,x,5) 2 2 + 10*df(u,x,3)*c*u + 10*df(u,x,2)*df(u,x)*b - 2*df(u,x)*b *u 2 2 2 + 7*df(u,x)*b*c*u - 3*df(u,x)*c *u )/10 ) = 2 2 2 3 3 df( (750*df(u,x) *b*t - 2250*df(u,x) *c*t - 100*b *t*u + 350*b*c*t*u 2 3 - 150*c *t*u - 1500*u*x)/(b - 3*c), t ) + df( ( - 1500*df(u,t)*df(u,x)*b*t + 4500*df(u,t)*df(u,x)*c*t - 1500*df(u,x,4)*df(u,x,2)*b*t + 4500*df(u,x,4)*df(u,x,2)*c*t 2 2 2 2 2 - 300*df(u,x,4)*b *t*u + 1050*df(u,x,4)*b*c*t*u - 450*df(u,x,4)*c *t*u 2 2 - 1500*df(u,x,4)*x + 750*df(u,x,3) *b*t - 2250*df(u,x,3) *c*t 2 + 600*df(u,x,3)*df(u,x)*b *t*u - 2100*df(u,x,3)*df(u,x)*b*c*t*u 2 2 2 + 900*df(u,x,3)*df(u,x)*c *t*u + 1500*df(u,x,3) - 300*df(u,x,2) *b *t*u 2 2 2 + 300*df(u,x,2) *b*c*t*u + 1800*df(u,x,2) *c *t*u 2 2 2 - 600*df(u,x,2)*df(u,x) *b *t + 2100*df(u,x,2)*df(u,x) *b*c*t 2 2 2 3 - 900*df(u,x,2)*df(u,x) *c *t - 300*df(u,x,2)*b *c*t*u 2 3 3 3 + 1050*df(u,x,2)*b*c *t*u - 450*df(u,x,2)*c *t*u - 1500*df(u,x,2)*c*u*x 2 2 2 2 2 3 2 - 1500*df(u,x) *a*b*t*u + 4500*df(u,x) *a*c*t*u - 300*df(u,x) *b *t*u 2 2 2 2 2 2 2 + 1950*df(u,x) *b *c*t*u - 3600*df(u,x) *b*c *t*u - 750*df(u,x) *b*x 2 3 2 2 2 2 + 1350*df(u,x) *c *t*u + 750*df(u,x) *c*x - 750*df(u,x)*a*u *x 2 2 2 2 2 2 2 2 - 150*df(u,x)*b *u *x + 525*df(u,x)*b*c*u *x - 225*df(u,x)*c *u *x 4 5 3 5 2 2 5 + 1500*df(u,x)*c*u + 12*b *t*u - 84*b *c*t*u + 183*b *c *t*u 2 3 3 5 3 4 5 2 3 + 100*b *u *x - 126*b*c *t*u - 350*b*c*u *x + 27*c *t*u + 150*c *u *x)/( b - 3*c), x ) ====================================================== Conservation law: a=0, b c=---, 3 3*df(u,t) + 3*df(u,x,5) + df(u,x,3)*b*u + 3*df(u,x,2)*df(u,x)*b ( 6*x ) * ( ----------------------------------------------------------------- ) 3 = 2 df( - 3*df(u,x)*x , t ) + 2 2 2 df( 3*df(u,t)*x + 6*df(u,x,4)*x - df(u,x,3)*b*u*x + 3*df(u,x,3)*c*u*x 2 2 2 - 6*df(u,x,3) + 2*df(u,x,2)*b*u*x + 2*df(u,x) *b*x + 3*df(u,x)*a*u *x - 2*df(u,x)*b*u, x ) ====================================================== Conservation law: a=0, b c=---, 3 2 9*x 3*df(u,t) + 3*df(u,x,5) + df(u,x,3)*b*u + 3*df(u,x,2)*df(u,x)*b ( ------ ) * ( ----------------------------------------------------------------- b 3 ) = 3 - 3*df(u,x)*x df( -----------------, t ) b + 3 2 3 3 df( (3*df(u,t)*x + 9*df(u,x,4)*x - df(u,x,3)*b*u*x + 3*df(u,x,3)*c*u*x 2 2 2 - 18*df(u,x,3)*x + 3*df(u,x,2)*b*u*x + 18*df(u,x,2) + 3*df(u,x) *b*x 2 3 2 + 3*df(u,x)*a*u *x - 6*df(u,x)*b*u*x + 3*b*u )/b, x ) ====================================================== The function c_392(t) is not constant! The function c_372(t,x) is not constant! There are remaining conditions: {df(c_372,t) + df(c_372,x,5) - c_392} for the functions: c_372(t,x), c_392(t) Corresponding CLs might not be shown below as they could be of too low order. ====================================================== The function c_443(t) is not constant! The function c_372(t,x) is not constant! There are remaining conditions: {20*df(c_372,t) + 20*df(c_372,x,5) - c_443} for the functions: c_372(t,x), c_443(t) Corresponding CLs might not be shown below as they could be of too low order. ====================================================== Conservation law: a=0, b=0, c=0, ( - 2*df(u,x,2) ) * ( df(u,t) + df(u,x,5) ) = 2 df( df(u,x) , t ) + 2 df( - 2*df(u,t)*df(u,x) - 2*df(u,x,4)*df(u,x,2) + df(u,x,3) 2 2 2 - 2*df(u,x,3)*df(u,x)*c*u - 2*df(u,x,2)*df(u,x) *b - 2*df(u,x) *a*u , x ) ====================================================== Conservation law: 2 3*b a=------, 40 b c=---, 2 2 ( - 4000*df(u,x,2) - 600*b*u ) * ( (40*df(u,t) + 40*df(u,x,5) 2 2 + 20*df(u,x,3)*b*u + 40*df(u,x,2)*df(u,x)*b + 3*df(u,x)*b *u )/40 ) = 2 3 df( 2000*df(u,x) - 200*b*u , t ) + 2 df( - 4000*df(u,t)*df(u,x) - 4000*df(u,x,4)*df(u,x,2) - 600*df(u,x,4)*b*u 2 + 2000*df(u,x,3) + 3200*df(u,x,3)*df(u,x)*b*u - 4000*df(u,x,3)*df(u,x)*c*u 2 2 2 3 - 1600*df(u,x,2) *b*u - 1200*df(u,x,2)*df(u,x) *b - 300*df(u,x,2)*b *u 2 2 2 2 2 3 5 - 4000*df(u,x) *a*u + 300*df(u,x) *b *u - 9*b *u , x ) ====================================================== Conservation law: 2 3*b a=------, 40 b c=---, 2 2 2 - 4000*df(u,x,2)*b*t - 600*b *t*u + 8000*x ( ---------------------------------------------- ) * ( (40*df(u,t) b 2 2 + 40*df(u,x,5) + 20*df(u,x,3)*b*u + 40*df(u,x,2)*df(u,x)*b + 3*df(u,x)*b *u )/40 ) = 2 2 3 2000*df(u,x) *b*t - 200*b *t*u + 8000*u*x df( --------------------------------------------, t ) b + df( ( - 4000*df(u,t)*df(u,x)*b*t - 4000*df(u,x,4)*df(u,x,2)*b*t 2 2 2 - 600*df(u,x,4)*b *t*u + 8000*df(u,x,4)*x + 2000*df(u,x,3) *b*t 2 + 3200*df(u,x,3)*df(u,x)*b *t*u - 4000*df(u,x,3)*df(u,x)*b*c*t*u 2 2 - 2000*df(u,x,3)*b*u*x + 4000*df(u,x,3)*c*u*x - 8000*df(u,x,3) 2 2 2 2 - 1600*df(u,x,2) *b *t*u - 1200*df(u,x,2)*df(u,x) *b *t 3 3 2 2 - 300*df(u,x,2)*b *t*u + 4000*df(u,x,2)*b*u*x - 4000*df(u,x) *a*b*t*u 2 3 2 2 2 2 + 300*df(u,x) *b *t*u + 2000*df(u,x) *b*x + 4000*df(u,x)*a*u *x 2 2 2 4 5 2 3 - 300*df(u,x)*b *u *x - 4000*df(u,x)*b*u - 9*b *t*u + 200*b *u *x)/b, x ) ====================================================== Conservation law: b=0, c=0, 3 2 ( --- ) * ( df(u,t) + df(u,x,5) + df(u,x)*a*u ) a = - 3*df(u,x)*x df( ----------------, t ) a + df( 3 3*df(u,t)*x + 3*df(u,x,4) + 3*df(u,x,3)*c*u*x + 3*df(u,x,2)*df(u,x)*b*x + a*u -------------------------------------------------------------------------------- a , x ) ====================================================== The function c_425(t) is not constant! The function c_372(t,x) is not constant! There are remaining conditions: {2*df(c_372,t) + 2*df(c_372,x,5) - c_425} for the functions: c_372(t,x), c_425(t) Corresponding CLs might not be shown below as they could be of too low order. ====================================================== ************************************************************************** CONLAWi can also be used to determine first integrals of ODEs. The generality of the ansatz is not just specified by the order. For example, the Lorentz system below is a first order system therefore any first integrals are zero order expressions. The ansatz to be investigated below looks for first integrals of the form a1(x,1)+a2(y,t)+a3(x,t)=const. and determines parameters s,b,r such that first integrals exist. -------------------------------------------------------------------------- This is CONLAW1 - a program for calculating conservation laws of DEs The DEs under investigation are : df(x,t)= - s*x + s*y df(y,t)=r*x + x*z - y df(z,t)= - b*z + x*y for the function(s): {x,y,z} ====================================================== A special ansatz of order 0 for the conserved current is investigated. The function c_584(x) is not constant! ====================================================== Conservation law: s=0, r=0, b=1, 2*t ( - 2*e *z ) * ( df(z,t) - x*y + z ) + 2*t ( 2*e *y ) * ( df(y,t) - x*z + y ) + ( 0 ) * ( df(x,t) ) = 2*t 2 2*t 2 df( e *y - e *z , t ) ====================================================== Conservation law: s=0, r=0, b=1, ( 0 ) * ( df(z,t) - x*y + z ) + ( 0 ) * ( df(y,t) - x*z + y ) + ( df(c_584,x) ) * ( df(x,t) ) = df( c_584, t ) ====================================================== The function c_584(x) is not constant! ====================================================== Conservation law: s=0, r=0, ( 0 ) * ( df(z,t) + b*z - x*y ) + ( 0 ) * ( df(y,t) - x*z + y ) + ( df(c_584,x) ) * ( df(x,t) ) = df( c_584, t ) ====================================================== The function c_586(x) is not constant! ====================================================== Conservation law: s=0, ( 0 ) * ( df(z,t) + b*z - x*y ) + ( 0 ) * ( df(y,t) - r*x - x*z + y ) + ( df(c_586,x) ) * ( df(x,t) ) = df( c_586, t ) ====================================================== Conservation law: 1 s=---, 2 r=0, b=1, t ( - e ) * ( df(z,t) - x*y + z ) + ( 0 ) * ( df(y,t) - x*z + y ) + t 2*df(x,t) + x - y ( 2*e *x ) * ( ------------------- ) 2 = t 2 t df( e *x - e *z, t ) ====================================================== Conservation law: 1 s=---, 2 r=0, b=1, 2*t ( - 2*e *z ) * ( df(z,t) - x*y + z ) + 2*t ( 2*e *y ) * ( df(y,t) - x*z + y ) + 2*df(x,t) + x - y ( 0 ) * ( ------------------- ) 2 = 2*t 2 2*t 2 df( e *y - e *z , t ) ====================================================== Conservation law: r=0, b=1, 2*t ( - 2*e *z ) * ( df(z,t) - x*y + z ) + 2*t ( 2*e *y ) * ( df(y,t) - x*z + y ) + ( 0 ) * ( df(x,t) + s*x - s*y ) = 2*t 2 2*t 2 df( e *y - e *z , t ) ====================================================== Conservation law: s=1, b=1, 2*t ( - 2*e *z ) * ( df(z,t) - x*y + z ) + 2*t ( 2*e *y ) * ( df(y,t) - r*x - x*z + y ) + 2*t ( - 2*e *r*x ) * ( df(x,t) + x - y ) = 2*t 2 2*t 2 2*t 2 df( - e *r*x + e *y - e *z , t ) ====================================================== Conservation law: b=2*s, 2*s*t ( - 2*e ) * ( df(z,t) + 2*s*z - x*y ) + ( 0 ) * ( df(y,t) - r*x - x*z + y ) + 2*s*t 2*e *x ( ------------ ) * ( df(x,t) + s*x - s*y ) s = 2*s*t 2*s*t 2 - 2*e *s*z + e *x df( -----------------------------, t ) s ====================================================== Time for test: 921304 ms, plus GC time: 21570 ms