Artifact 952212fa6924a88f21703a1055133d8b6ea5f24c04998fe60928bfc48fde6f5d:
- Executable file
r38/packages/qsum/qsum.red
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 55257) [annotate] [blame] [check-ins using] [more...]
module qsum; % summation of q-hypergeometric terms % Authors: Wolfram Koepf, Harald Boeing % Version 1.0, May 1997. algebraic; % ---------------------------------------------------------------------- share !*qsumrecursion!@sub; lisp setq(!*qsumrecursion!@sub, list(!*redefmsg, !*echo, !*output)); lisp setq(!*redefmsg, nil); off echo; off output; % ------------------------------ SWITCHES ------------------------------ switch qsum_nullspace; switch qsum_trace; switch qgosper_down; switch qgosper_specialsol; switch qsumrecursion_down; switch qsumrecursion_exp; switch qsumrecursion_certificate; switch qsumrecursion_profile; lisp setq(!*qsumrecursion_profile, nil); lisp setq(!*qsum_nullspace, nil); lisp setq(!*qsum_trace, nil); lisp setq(!*qgosper_down, t); lisp setq(!*qgosper_specialsol, t); lisp setq(!*qsumrecursion_down, t); lisp setq(!*qsumrecursion_exp, nil); lisp setq(!*qsumrecursion_certificate, nil); % ------------------------ GLOBAL VARIABLES ---------------------------- clear summ; operator summ; clear arbcomplex; operator arbcomplex; share qsumrecursion_recrange!*; qsumrecursion_recrange!*:= {1,5}; % ====================================================================== for all x,n such that fixp(n/2) and not(lisp !*complex) let abs(x)^n=x^n; % ====================================================================== % ---------------------------------------------------------------------- % BESCHREIBUNG: % % new_simpexpt ist gedacht um das Fakorisieren von Exponenten % (bei on factor) zu verhindern. % % Die alte Prozedure simpexpt wird vorher mittels % copyd('original_simpexpt, 'simpexpt) % gesichert. Anschlie"sen kann die neue Prozedur % mittels % copyd('simpexpt, 'new_simpexpt) % als neuer Standard gesetzt werden. Will man dies wieder % r"uckg"angig machen, so mu"s man die alte Prozedur mittels % copyd('simpexpt, 'original_simpexpt) % wieder als Standard defininieren. % % % % lisp; if null(getd 'original_simpexpt) then copyd('original_simpexpt, 'simpexpt); algebraic; % ---------------------------------------------------------------------- symbolic procedure new_simpexpt(u); begin scalar !*PRECISE, !*FACTOR, !*EXP, !*MCD, !*ALLFAC, redefmode; % Schalte exp ein, damit die Exponenten expandiert werden. % Ausschalten von PRECISE um Vereinfachungen wie % (x*y)^k => x^k*y^k zu erreichen. on EXP, MCD; off PRECISE, ALLFAC; % switch-setting if eqcar(car u, 'minus) then return multsq(original_simpexpt({{'minus,1},cadr(u)}), new_simpexpt({cadar(u),cadr(u)})); % Rufe zun"achst die Original-Prozedur auf... % Da diese rekursive programmiert ist, kann sie sich selber wieder % aufrufen, so da"s sie zun"achst wieder als Standard % wiederherzustellen ist. % Zudem ist zu verhindern, da"s Warning-messages % Function has been redefined erscheinen... redefmode:= !*redefmsg; !*redefmsg:= nil; copyd('simpexpt, 'original_simpexpt); u:= simpexpt u; copyd('simpexpt, 'new_simpexpt); !*redefmsg:= redefmode; return u; end; % ---------------------------------------------------------------------- % ---------------------------------------------------------------------- % some compatibility functions for Maple sources. % by Winfried Neun put('PolynomQQ,'psopfn,'polynomQQQ); algebraic procedure polynomq4(expr1,k); begin scalar !*exp; on exp; return polynomqq(expr1,k); end; % checks if expr is rational in var algebraic procedure type_ratpoly(expr1,var); begin scalar deno, nume; deno:=den expr1; nume:=num expr1; if (PolynomQQ (deno,var) and PolynomQQ (nume,var)) then return t else return nil; end; flag ('(type_ratpoly),'boolean); symbolic procedure tttype_ratpoly(u,xx); ( if fixp xx then t else if not eqcar (xx , '!*sq) then nil else and(polynomQQQ(list(mk!*sq (numr cadr xx ./ 1), reval cadr u)) ,polynomQQQ(list(mk!*sq (denr cadr xx ./ 1), reval cadr u))) ) where xx = aeval(car u); flag ('(tttype_ratpoly),'boolean); %checks if x is polynomial in var symbolic procedure PolynomQ (x,var); if not fixp denr simp x then NIL else begin scalar kerns,kern,aa; kerns:=kernels !*q2f simp x; aa: if null kerns then return T; kern:=first kerns; kerns:=cdr kerns; if not(eq (kern, var)) and depends(kern,var) then return NIL else go aa; end; flag('(PolynomQ),'opfn); flag ('(PolynomQ type_ratpoly),'boolean); symbolic procedure PolynomQQQ (x); (if fixp xx then t else if not onep denr (xx:=cadr xx) then NIL else begin scalar kerns,kern,aa,var,fform,mvv,degg; fform:=sfp mvar numr xx; var:=reval cadr x; if fform then << xx:=numr xx; while (xx neq 1) do << mvv:=mvar xx; degg:=ldeg xx; xx:=lc xx; if domainp mvv then <<if not freeof(mvv,var) then << xx:=1 ; kerns:=list list('sin,var) >> >> else kerns:=append ( append (kernels mvv,kernels degg),kerns) >> >> else kerns:=kernels !*q2f xx; aa: if null kerns then return T; kern:=first kerns; kerns:=cdr kerns; if not(eq (kern, var)) and depends(kern,var) then return NIL else go aa; end) where xx = aeval(car x); put('PolynomQQ,'psopfn,'polynomQQQ); symbolic procedure ttttype_ratpoly(u); ( if fixp xx then t else if not eqcar (xx , '!*sq) then nil else and(polynomQQQ(list(mk!*sq (numr cadr xx ./ 1), reval cadr u)) ,polynomQQQ(list(mk!*sq (denr cadr xx ./ 1), reval cadr u))) ) where xx = aeval(car u); flag ('(type_ratpoly),'boolean); put('type_ratpoly,'psopfn,'ttttype_ratpoly); % ---------------------------------------------------------------------- % ---------------------------------------------------------------------- symbolic procedure start; begin return (profile_time!*:= {'list, time(), gctime()}); end$ symbolic operator start; % ---------------------------------------------------------------------- symbolic procedure stop; begin scalar gct, cput; gct:= gctime() - caddr(profile_time!*); cput:= time() - cadr(profile_time!*) - gct; return {'list, cput, gct}; end$ symbolic operator stop; % ---------------------------------------------------------------------- symbolic procedure showprofile; begin scalar tim; prin2 "CPU: "; tim:= time() - cadr(profile_time!*); prin2 tim; tim:= gctime() - caddr(profile_time!*); if (tim=0) then return terpri(); prin2 " , GC: "; prin2 tim; terpri(); end$ symbolic operator showprofile; % ---------------------------------------------------------------------- operator timing!-cpu!+gc!*, timing!-gc!*; algebraic procedure timing(n); begin if (n=start) then return <<clear timing!-cpu!+gc!*, timing!-gc!*; operator timing!-cpu!+gc!*, timing!-gc!*;>>; if numberp(timing!-cpu!+gc!*(n)) then << timing!-gc!*(n):= (lisp gctime()) - timing!-gc!*(n); timing!-cpu!+gc!*(n):= (lisp time()) - timing!-cpu!+gc!*(n); >> else << timing!-gc!*(n):= (lisp gctime()); timing!-cpu!+gc!*(n):= (lisp time()); >>; return {timing!-cpu!+gc!*(n)-timing!-gc!*(n), timing!-gc!*(n)}; end$ % ---------------------------------------------------------------------- algebraic procedure showtiming(n); {timing!-cpu!+gc!*(n)-timing!-gc!*(n), timing!-gc!*(n)}; % ---------------------------------------------------------------------- algebraic procedure showcputiming(n); timing!-cpu!+gc!*(n) - timing!-gc!*(n); % ---------------------------------------------------------------------- algebraic procedure showgctiming(n); timing!-gc!*(n); % ---------------------------------------------------------------------- % ====================================================================== symbolic procedure product2list(term); begin scalar !*FACTOR, !*EXP, !*LIMITEDFACTORS, !*MCD, l, z; on FACTOR, MCD; off LIMITEDFACTORS; % switch-setting term:= simp aeval(term); z:= numr term; l:= {}; while pairp(z) and (red(z) eq nil) do begin l:= mk!*sq(((((mvar(z) . ldeg(z)) . 1) . nil)) . 1) . l; z:= lc(z); end; if not eqn(z,1) then l:= mk!*sq(z . 1) . l; z:= denr term; while pairp(z) and (red(z) eq nil) do begin l:= mk!*sq(((((mvar(z) . -ldeg(z)) . 1) . red(z))) . 1) . l; z:= lc(z); end; if not eqn(z,1) then l:= mk!*sq(1.z) . l; return 'list . l; end$ symbolic operator product2list; % ---------------------------------------------------------------------- symbolic procedure sum2list(z); begin scalar !*FACTOR, !*EXP, !*MCD, !*ALLFAC, l, denom; on EXP, MCD; off ALLFAC; % switch-setting z:= simp aeval(z); denom:= denr z; z:= numr z; if atom(z) or not(numberp(denom)) then return 'list . {mk!*sq(z . denom)}; l:= {}; repeat << l:= mk!*sq(((((mvar(z) . ldeg(z)) . lc(z)) . nil)) . denom) . l; z:= red(z); >> until atom(z) or null(z); if not(null(z)) then l:= mk!*sq(z . 1) . l; return 'list . l; end$ symbolic operator sum2list; % ---------------------------------------------------------------------- % ====================================================================== % ---------------------------------------------------------------------- algebraic procedure laurentcoeff(p, x); begin scalar !*EXP, !*FACTOR, !*MCD, !*DIV, np, dp; on EXP, MCD; off DIV; % switch-setting np:= coeff(num(p),x); dp:= sub(x=1, den(p)); return (for each j in np collect (j/dp)); end$ % ---------------------------------------------------------------------- algebraic procedure laurentcoeffn(p, x, n); begin scalar !*EXP, !*FACTOR, !*MCD, !*RATIONAL, DMODE!*, !*DIV, np, dp, d; on EXP, MCD; off RATIONAL; % switch-setting dp:= den(p); d:= deg(dp, x); np:= num(p) / sub(x=1,dp); n:= n + d; if (n < 0) then return 0; return coeffn(np,x,n); end; % ---------------------------------------------------------------------- algebraic procedure laurentdegree(p, x); begin scalar !*EXP, !*FACTOR, !*MCD, !*DIV, !*RATIONAL, DMODE!*; on EXP, MCD; off DIV, RATIONAL; % switch-setting return (deg(num(p),x) - deg(den(p),x)); end$ % ---------------------------------------------------------------------- algebraic procedure laurentldegree(p, x); begin scalar !*EXP, !*FACTOR, !*MCD, !*DIV, !*RATIONAL, DMODE!*; on EXP, MCD; off DIV, RATIONAL; % switch-setting p:= sub(x=1/x, p); return (deg(den(p),x) - deg(num(p),x)); end$ % ---------------------------------------------------------------------- % ---------------------------------------------------------------------- % ---------------------------------------------------------------------- symbolic procedure nullspace_size(x); begin if atom(x) then return 1 else return (nullspace_size(car x) + nullspace_size(cdr x)); end$ % ---------------------------------------------------------------------- symbolic procedure nullspace_equations2sqmatrix(gls, var, m, n); begin scalar a, gl; timing('nullspace_equations2sqmatrix); a:= mkvect(m); for j:=0:m do putv(a, j, mkvect(n+1)); for row:=0:m do begin gl:= car(gls); if pairp(gl) and (car(gl) = 'equal) then gl:= addsq(simp(cadr(gl)), negsq(simp(caddr(gl)))) else gl:= simp(gl); gls:= cdr(gls); for j:=0:n do begin putv(getv(a,row), j, simp(coeffn(aeval mk!*sq gl, getv(var,j), 1))); gl:= (subsq(gl, {getv(var,j) . 0})); end; putv(getv(a,row), n+1, gl); end; timing('nullspace_equations2sqmatrix); return a; end$ % ---------------------------------------------------------------------- symbolic procedure nullspacesolve(a, var); begin scalar !*FACTOR, !*EXP, !*GCD, !*MCD, !*LIMITEDFACTORS, m, n, nr_pref_va, va; timing('nullspacesolve); on EXP, MCD; off GCD, LIMITEDFACTORS; % switch-setting % put equations into list and remove 'zeroe-entries'... if pairp(a) and (car(a) = 'list) then a:= cdr(a) else a:= (a . nil); m:= length(a); va:= nil; for j:=1:m do begin n:= car(a); a:= cdr(a); if (n neq 0) then va:= n . va; end; a:= va; % put variables in list and then into a vector if pairp(var) and (car(var) = 'list) then var:= cdr(var) else var:= (var . nil); m:= length(a) - 1; n:= length(var) - 1; nr_pref_va:= n; va:= mkvect(n); for j:=0:n do <<putv(va,j,car(var)); var:= cdr(var)>>; a:= nullspace_equations2sqmatrix(a, va, m, n); on FACTOR; % switch-setting a:= a; a:= nullspace_triangulize(a, va, m, n+1, nr_pref_va); va:= cadr(a); a:= car(a); a:= nullspace_sort(a); a:= nullspace_matrix2solution(a, va); timing('nullspacesolve); return a; end$ symbolic operator nullspacesolve; % ---------------------------------------------------------------------- symbolic procedure nullspace_showmat(a); begin scalar m, n; m:= upbv(a); n:= upbv(getv(a,1)); for j:=0:m do begin prin2("{"); for i:=0:n do begin prin2(prepsq getv(getv(a,j),i)); prin2(" "); end; prin2t("}"); end; end$ % ---------------------------------------------------------------------- symbolic procedure nullspace_triangulize(a, var, m, n, nr_pref_va); begin scalar tmp, c, not_changed, j, pivot; timing('nullspace_triangulize); % Determine number of equations and number of columns % Initialize vector c determines whether a row was "triangulized" c:= mkvect(m); for j:=0:m do putv(c,j,-1); not_changed:= (for j:=0:m collect j); % Start triangulization for k:=0:m do begin pivot:= nullspace_triangulize_pivot (a, not_changed, m, n-1, k, nr_pref_va); if (pivot neq nil) then begin j:= cadr(pivot); % Exchange columns such that pivot-element is at column k nullspace_triangulize_exchange_columns(a, j, k); % Change variable order tmp:= getv(var,j); putv(var,j,getv(var,k)); putv(var,k,tmp); j:= car(pivot); pivot:= simp mk!*sq negsq(getv(getv(a,j),k)); for l:=0:n do putv(getv(a,j), l, simp mk!*sq quotsq(getv(getv(a,j),l),pivot)); % Mark row j as 'used' putv(c,j,k); not_changed:= {}; for l:=0:m do if (getv(c,l) < 0) then not_changed:= l.not_changed; % Eliminate column-entry k in 'unused' rows for each h in not_changed do begin pivot:= getv(getv(a,h),k); for l:=0:k-1 do << tmp:= simp mk!*sq multsq(pivot,getv(getv(a,j),l)); tmp:= simp mk!*sq addsq(getv(getv(a,h),l),tmp); putv(getv(a,h),l,tmp); >>; putv(getv(a,h),k,simp(0)); for l:=k+1:n do << tmp:= simp mk!*sq multsq(pivot,getv(getv(a,j),l)); tmp:= simp mk!*sq addsq(getv(getv(a,h),l),tmp); putv(getv(a,h),l,tmp); >>; end; % of for each h in not_changed end; % of if (pivot neq nil) end; % of for k:=0:n timing('nullspace_triangulize); return {a, var}; end$ % ---------------------------------------------------------------------- symbolic procedure nullspace_triangulize_pivot(a, not_changed, m, n, k, nr_pref_va); begin scalar !*EXP, !*FACTOR, !*MCD, !*GCD, row, pivot, pivotsize, l1, l2, tmp; timing('nullspace_triangulize_pivot); off FACTOR, EXP, MCD, GCD; % switch-setting pivot:= nil; pivotsize:= {10^10, 10^10}; for each j in not_changed do begin for h:=k:nr_pref_va do begin row:= getv(a,j); tmp:= getv(row,h); if (tmp neq simp(0)) then begin l1:= nullspace_size(tmp); if (l1 < car(pivotsize)+10) then begin l2:= (for r:=k:n sum nullspace_size(quotsq(getv(row,r),tmp))); if (l2 < cadr(pivotsize)+100) then begin pivot:= {j, h}; pivotsize:= {l1, l2}; end; end; end; % of if end; % of for h:=k:nr_pref_va end; % of for each j timing('nullspace_triangulize_pivot); if (nr_pref_va < n) and (pivot = nil) then return nullspace_triangulize_pivot(a, not_changed, m, n, k, n); return pivot; end$ % ---------------------------------------------------------------------- symbolic procedure nullspace_triangulize_exchange_columns(a, j, k); begin scalar length_a, tmp; if (j = k) then return a; length_a:= upbv(a); for l:=0:length_a do begin tmp:= getv(getv(a,l), j); putv(getv(a,l), j, getv(getv(a,l),k)); putv(getv(a,l), k, tmp); end; return a; end$ % ---------------------------------------------------------------------- symbolic procedure nullspace_triangulize_exchange_rows(a, j, k); begin scalar tmp; if (j = k) then return a; tmp:= getv(a, j); putv(a, j, getv(a,k)); putv(a, k, tmp); end$ % ---------------------------------------------------------------------- symbolic procedure nullspace_sort_comp(l1, l2); begin scalar z1, z2, len1, len2, zeroe; zeroe:= simp(0); z1:= 0; len1:= upbv(l1); while (z1 <= len1) and (getv(l1,z1) = zeroe) do z1:= z1+1; z2:= 0; len2:= upbv(l2); while (z2 <= len2) and (getv(l2,z2) = zeroe) do z2:= z2+1; if (z1 > z2) then return t else return nil; end$ % ---------------------------------------------------------------------- symbolic procedure nullspace_bubblesort(l,fn); begin scalar ln, tmp; ln:= upbv(l); for i:=0:ln do for j:=i+1:ln do if (i neq j) and apply2(fn,getv(l,j),getv(l,i)) then begin tmp:= getv(l,i); putv(l, i, getv(l,j)); putv(l, j, tmp); end; return l; end$ % ---------------------------------------------------------------------- symbolic procedure nullspace_sort(a); begin scalar n, zeroelist, l, sorted_a; timing('nullspace_sort); a:= nullspace_bubblesort(a, 'nullspace_sort_comp); l:= upbv(getv(a,0)); zeroelist:= mkvect(l); for j:=0:l do putv(zeroelist, j, simp(0)); n:= 0; l:= upbv(a); while (n <= l) and (getv(a,n) = zeroelist) do n:= n+1; sorted_a:= mkvect(l-n); for j:=n:l do putv(sorted_a,j-n,getv(a,j)); timing('nullspace_sort); return sorted_a; end$ % ---------------------------------------------------------------------- symbolic procedure nullspace_matrix2solution(a, var); begin scalar m, n, solu, tmp, row; timing('nullspace_matrix2solution); m:= upbv(a); n:= upbv(var); % All rows with zeroe entries (only) have been cancelled. % If the first row has n zeroes as first entries, then the % last one has to be different from zeroe, i.e. there is no % solution! solu:= (for j:=0:n collect getv(getv(a,0),j)); if (solu = (for j:=0:n collect simp(0))) then return <<timing('nullspace_matrix2solution); 'list . nil>>; % Backsubstitution... % Append 1 to variables for righhandside of equation. solu:= mkvect(n+1); for j:=0:n do putv(solu, j, simp(getv(var,j))); putv(solu, n+1, simp(1)); for j:=m step (-1) until 0 do begin tmp:= simp(0); row:= getv(a,m-j); for h:=j+1:n+1 do tmp:= addsq(tmp, multsq(negsq(getv(row,h)),getv(solu,h))); putv(solu, j, quotsq(tmp, getv(row,j))); end; % of for j solu:= (for j:=0:n collect {'equal, getv(var,j), mk!*sq(getv(solu,j))}); timing('nullspace_matrix2solution); return ('list . solu); end$ % ---------------------------------------------------------------------- algebraic procedure nullspace_profile(); begin write "nullspace_coefflist: ", showcputiming(nullspace_equations2sqmatrix); write "nullspace_triangulize: ", showcputiming(nullspace_triangulize); write "nullspace_triangulize_pivot:", showcputiming(nullspace_triangulize_pivot); write "nullspace_sort: ", showcputiming(nullspace_sort); write "nullspace_matrix2solution: ", showcputiming(nullspace_matrix2solution); write "nullspace: ", showcputiming(nullspacesolve), " (", showgctiming(nullspacesolve), ")"; end$ % ---------------------------------------------------------------------- % ====================================================================== algebraic procedure trace_qsum(text, term); begin if (lisp !*qsum_trace) then write text, " ", (sub(!*qsumrecursion!@sub, term)); end$ % ====================================================================== % ---------------------------------------------------------------------- symbolic procedure qsumrecursion_number(n, d); begin scalar l, b; l:= explode reval n; b:= d-length(l); if (b > 0) then for j:=1:b do prin2(" "); for each j in l do prin1 compress list(j); end; % ---------------------------------------------------------------------- symbolic procedure qsumrecursion_qprofile; begin scalar qrat, qupd, qdis, qfin, qsol, qdeg, qsum, qsgc, maxt, lmax; qrat:= reval showcputiming('qratios); qupd:= reval showcputiming('qupdate); qdis:= reval showcputiming('qdispersionset); qfin:= reval showcputiming('qfindf); qsol:= reval showcputiming('solve); qdeg:= reval showcputiming('qdegreebound); qsum:= reval showcputiming('qsumrecursion); qsgc:= reval showgctiming('qsumrecursion); maxt:= length explode max(qrat,qupd,qdis,qsol,qdeg,qsum); lmax:= length explode max(qdis,qsol,qsgc); prin2t " "; prin2 " qratios: "; qsumrecursion_number(qrat, maxt); prin2t ""; prin2 " qupdate: "; qsumrecursion_number(qupd, maxt); prin2 " ("; qsumrecursion_number(qdis, lmax); prin2t " qdispersionset)"; prin2 " qfindf: "; qsumrecursion_number(qfin, maxt); prin2 " ("; qsumrecursion_number(qsol, lmax); prin2 " solve, "; prin2 qdeg; %qsumrecursion_number(qdeg, lmax); prin2t " qdegreebound)"; prin2 " qsumrecursion: "; qsumrecursion_number(qsum, maxt); prin2 " ("; qsumrecursion_number(qsgc, lmax); prin2t " gc-time)"; end$ symbolic operator qsumrecursion_qprofile; % ---------------------------------------------------------------------- % ====================================================================== clear binomial, qpochhammer, qfac, qbinomial, qbrackets, qfactorial; operator binomial, qpochhammer, qfac, qbinomial, qbrackets, qfactorial; % ====================================================================== algebraic procedure qpsihyperterm(nu, de, q, z, n); begin scalar r, s; r:= length(nu); s:= length(de); nu:= (for each j in nu product qpochhammer(j,q,n)); de:= (for each j in de product qpochhammer(j,q,n)); nu:= nu * (-1)^((s-r)*n) * q^((s-r)*n*(n-1)/2) * z^n; return nu/de; end$ % ---------------------------------------------------------------------- algebraic procedure qphihyperterm(nu, de, q, z, n); begin scalar r, s; r:= length(nu); s:= length(de); nu:= (for each j in nu product qpochhammer(j,q,n)); de:= (for each j in de product qpochhammer(j,q,n)); nu:= nu * z^n * ((-1)^n*q^(n*(n-1)/2))^(1+s-r); return nu/(de * qpochhammer(q,q,n)); end$ % ====================================================================== % ---------------------------------------------------------------------- symbolic procedure qsimpcomb_standard_integer_part_sf(f); begin scalar l, tmp, z; l:= nil; while pairp(f) do << tmp:= qsimpcomb_standard_integer_part_sf(lc f); z:= ((mvar f).(ldeg f)); repeat << l:= (((z.car(tmp)).nil) . l); tmp:= cdr(tmp); >> until null(tmp); f:= red f; >>; if not(null f) then l:= (f . l); return l; end; % ---------------------------------------------------------------------- symbolic procedure qsimpcomb_standard_integer_part(z); begin scalar !*BALANCED_MOD, !*EXP, !*FACTOR, !*RATIONAL, !*DMODE, n, d, tmp; on EXP; off BALANCED_MOD, RATIONAL; % switch-setting z:= simp aeval mk!*sq z; n:= numr z; d:= denr z; n:= qsimpcomb_standard_integer_part_sf n; if null(n) then return 0; z:= simp 0; repeat << tmp:= simp mk!*sq (car(n) . d); if (fixp numr tmp) and (fixp denr tmp) then z:= addsq(z, tmp); n:= cdr n; >> until null(n); if eqn(denr z,1) then if null(numr z) then return 0 else return (numr z); n:= numr z; d:= denr z; z:= (car qremf(n,d)); if (null(z) and !:minusp(n)) or !:minusp(z) then z:= addf(z,-1); if null(z) then return 0 else return z; end; % ---------------------------------------------------------------------- symbolic procedure qsimpcomb_standard_qexp_part_sf(f,q); begin scalar p, z; p:= simp nil; while pairp(f) and (null (red f)) do << if (mvar(f) eq q) then p:= addsq(p, simp(ldeg f)) else begin z:= mvar f; if pairp(z) and (car(z) eq 'expt) and (cadr(z) eq q) then p:= addsq(p, simp({'times,caddr z,ldeg(f)})); end; f:= lc f; >>; return p; end; % ---------------------------------------------------------------------- symbolic procedure qsimpcomb_standard_qexp_part(a,q,qe); begin scalar !*FACTOR, !*EXP, n, d; on FACTOR; % switch-setting a:= simp aeval mk!*sq a; n:= numr a; d:= denr a; n:= qsimpcomb_standard_qexp_part_sf(n,q); d:= qsimpcomb_standard_qexp_part_sf(d,q); n:= subtrsq(n,d); n:= qsimpcomb_standard_integer_part(quotsq(n,(simp qe))); d:= simp {'expt,q,{'times,mk!*sq(simp n),qe}}; if null(simp aeval mk!*sq(subtrsq(a, d))) then n:= !:difference(n,-1); return (n); end; % ---------------------------------------------------------------------- symbolic procedure qsimpcomb_qpochhammer_finite(u); begin scalar k, f, f1, jj; k:= caddr(u); f:= simp(1); if !:zerop(k) then return f; jj:= gensym(); f1:= simp({'difference,1,{'times,car(u),{'expt,cadr(u),jj}}}); if !:minusp(k) then (for j:=k:-1 do f:= quotsq(f,subsq(f1,{jj.j}))) else << k:= reval({'difference,k,1}); for j:=0:k do f:= multsq(f,subsq(f1,{jj.j})); >>; return f; end; % ---------------------------------------------------------------------- symbolic procedure qsimpcomb_qpochhammer_infinity(u,a,q,qe,k,m); begin scalar jj, f, f2; if (k eq simp({'minus,'infinity})) or !:zerop(m) then return mksq(('qpochhammer.u),1) else if (k neq simp('infinity)) then rederr "Invalid arguments in qpochhammer."; f:= simp(1); jj:= gensym(); a:= prepsq quotsq(a, simp {'expt,q,{'times,qe,m}}); f2:= simp {'difference,1,{'times,a,{'expt,q,{'times,qe,jj}}}}; if !:minusp(m) then % (m < 0) for j:=m:-1 do f:= multsq(f, subsq(f2, {jj.j})) else % (m >= 0) for j:=0:m-1 do f:= quotsq(f, subsq(f2, {jj.j})); f:= multsq(f, mksq({'qpochhammer,a,cadr(u),caddr(u)},1)); return f; end; % ---------------------------------------------------------------------- symbolic procedure qsimpcomb_qpochhammer(u); begin scalar a, q, qq, qe, k, n, m, f, jj, f1, f2; if not eqn(length u,3) then rederr "Invalid number of arguments in qpochhammer"; if fixp(caddr u) then return qsimpcomb_qpochhammer_finite(u); a:= simp car u; qq:= simp cadr u; q:= qq; k:= simp caddr u; % Die vereinfachten Argumente wieder als Liste nach u, % damit der zur"uckgelieferte qpochhammer-Term % standardisierte Argumente besitzt. (Sonst k"urzen sich diese % unter Umst"anden nicht ordentlich weg...) u:= {prepsq(a), prepsq(qq), prepsq(k)}; if idp(cadr u) then << qe:= 1; q:= mvar(numr q); >> else if eqn(denr q,1) then << q:= numr q; qe:= ldeg q; if not eqn(lc q,1) or not(idp(mvar q)) then rederr "Invalid arguments in qpochhammer"; q:= mvar q; >> else if eqn(numr q,1) then << q:= denr q; qe:= -(ldeg q); if not eqn(lc q,1) or not(idp(mvar q)) then rederr "Invalid arguments in qpochhammer."; q:= mvar q; >> else rederr "Invalid arguments in qpochhammer."; if null(a) then return (simp 1); if (a eq qq) then m:= 0 else << m:= qsimpcomb_standard_qexp_part(a,q,qe); if (a eq simp({'expt,q,{'times,qe,m}})) and !:minusp(!:minus(m)) then m:= !:difference(m,1); >>; n:= qsimpcomb_standard_integer_part(k); if !:zerop(n) and !:zerop(m) then return mksq(('qpochhammer.u),1); if not(freeof(k,'infinity)) then return qsimpcomb_qpochhammer_infinity(u,a,q,qe,k,m); f:= simp 1; jj:= gensym(); qq:= cadr u; a:= prepsq quotsq(a, simp {'expt,q,{'times,m,qe}}); k:= prepsq subtrsq(k,simp(n)); f1:= simp {'difference,1,{'times,a,{'expt,q,{'times,qe,{'plus,jj,k}}}}}; f2:= simp {'difference,1,{'times,a,{'expt,q,{'times,qe,jj}}}}; if !:minusp(!:plus(n,m)) then % (m+n < 0) if !:minusp(m) then << % (m < 0) for j:=m+n:-1 do f:= quotsq(f, subsq(f1, {jj.j})); for j:=m:-1 do f:= multsq(f, subsq(f2, {jj.j})); >> else << % (m >= 0) for j:=m+n:-1 do f:= quotsq(f, subsq(f1, {jj.j})); for j:=0:m-1 do f:= quotsq(f, subsq(f2, {jj.j})); >> else % (m+n >= 0) if !:minusp(m) then << % (m < 0) for j:=0:n+m-1 do f:= multsq(f, subsq(f1, {jj.j})); for j:=m:-1 do f:= multsq(f, subsq(f2, {jj.j})); >> else << % (m >= 0) for j:=0:n+m-1 do f:= multsq(f, subsq(f1, {jj.j})); for j:=0:m-1 do f:= quotsq(f, subsq(f2, {jj.j})); >>; u:= multsq(f, mksq({'qpochhammer,a,qq,k},1)); return u; end; % ---------------------------------------------------------------------- symbolic procedure qsimpcomb_binomial(u); begin scalar f, n, k; if not(fixp(cadr(u)) and (cadr(u) >= 0)) then return mksq({'binomial,car u,cadr u},1); n:= simp(car u); k:= cadr u; if eqn(k,0) then return simp(1); f:= simp 1; for j:=0:(!:difference(k,1)) do f:= multsq(f, subtrsq(n,simp(j))); f:= quotsq(f, simp({'factorial,k})); return f; end; % ---------------------------------------------------------------------- symbolic procedure qsimpcomb_qbinomial(u); begin scalar n, k, q; n:= car u; k:= cadr u; q:= caddr u; u:= {'quotient,{'qpochhammer,q,q,n},{'times, {'qpochhammer,q,q,k},{'qpochhammer,q,q,{'difference,n,k}}}}; return mksq(u,1); end; % ---------------------------------------------------------------------- symbolic procedure qsimpcomb_qbrackets(u); begin scalar n, q; n:= car u; q:= cadr u; u:= {'quotient,{'difference,{'expt,q,n},1},{'difference,q,1}}; return mksq(u,1); end; % ---------------------------------------------------------------------- symbolic procedure qsimpcomb_qfactorial(u); begin scalar n, q; n:= car u; q:= cadr u; u:= {'quotient,{'qpochhammer,q,q,n},{'expt,{'difference,1,q},n}}; return mksq(u,1); end; % ---------------------------------------------------------------------- symbolic procedure qsimpcomb_qfac(u); begin return mksq(('qpochhammer . u), 1); end; % ---------------------------------------------------------------------- symbolic procedure qsimplify(f); begin scalar !*precise, !*factor, !*exp, !*mcd, !*gcd, !*rational, redefmode, orig_bino, orig_qbin, orig_qbra, orig_qfct, orig_qfac, orig_qpoc; on FACTOR, MCD, GCD; off RATIONAL, PRECISE; % switch-setting if (length(f) neq 1) then rederr "Wrong number of arguments in qsimp"; % Install the procedure new_simpexpt, which does more rigid % simplifications of powers and save original one % AND prevent redefined-messages. redefmode:= !*redefmsg; !*redefmsg:= nil; copyd('simpexpt, 'new_simpexpt); orig_bino:= get('binomial, 'simpfn); put('binomial, 'simpfn, 'qsimpcomb_binomial); f:= aeval(car f); % Get old 'simplify-functions' for q-expressions orig_qbin:= get('qbinomial, 'simpfn); orig_qbra:= get('qbrackets, 'simpfn); orig_qfct:= get('qfactorial, 'simpfn); orig_qfac:= get('qfac, 'simpfn); orig_qpoc:= get('qpochhammer, 'simpfn); % Declare all 'simplify-functions' for q-expressions put('qbinomial, 'simpfn, 'qsimpcomb_qbinomial); put('qbrackets, 'simpfn, 'qsimpcomb_qbrackets); put('qfactorial, 'simpfn, 'qsimpcomb_qfactorial); put('qfac, 'simpfn, 'qsimpcomb_qpochhammer); put('qpochhammer, 'simpfn, 'qsimpcomb_qpochhammer); % Simplify expression rmsubs(); f:= mk!*sq(simp(reval f)); % Hide all 'simplify-functions put('binomial, 'simpfn, orig_bino); put('qbinomial, 'simpfn, orig_qbin); put('qbrackets, 'simpfn, orig_qbra); put('qfactorial, 'simpfn, orig_qfct); put('qfac, 'simpfn, orig_qfac); put('qpochhammer, 'simpfn, orig_qpoc); % Restore old simpexpt and former !*redefmsg-mode copyd('simpexpt, 'original_simpexpt); !*redefmsg:= redefmode; return f; end; put('qsimpcomb, 'psopfn, 'qsimplify); % ---------------------------------------------------------------------- % ====================================================================== algebraic procedure down_qratio(a, k); begin a:= qsimpcomb(a / sub(k=k-1,a)); return a; end$ % ---------------------------------------------------------------------- algebraic procedure up_qratio(a, k); begin a:= qsimpcomb(sub(k=k+1,a) / a); return a; end$ % ---------------------------------------------------------------------- algebraic procedure qratio(a, k); begin a:= qsimpcomb(sub(k=k+1,a) / a); return a; end$ % ====================================================================== % ---------------------------------------------------------------------- % select patch by W. Neun 12.96 symbolic procedure select!-eval u; % select from a list l members according to a boolean test. begin scalar l,w,v,r; l := reval cadr u; w := car u; if atom l or (car l neq'list and not flagp(car l,'nary)) then typerr(l,"select operand"); if idp w and get(w,'number!-of!-args)=1 then w:={w,{'~,'!&!&}}; if eqcar(w,'replaceby) then <<v:=cadr w;w:=caddr w>>; w:=freequote formbool(w,nil,'algebraic); if v then w:={'replaceby,v,w}; r:=for each q in pair(cdr map!-eval1(l,w,function(lambda y;y),'lispeval),cdr l) join if car q and car q neq 0 then {cdr q}; if r then return car l . r; if (r:=atsoc(car l,'((plus . 0)(times . 1)(and . 1)(or . 0)))) then return cdr r %else rederr {"empty selection for operator ",car l} else return list('list); end$ % ====================================================================== algebraic procedure type_homogeneous(f,z); begin scalar !*EXP, !*FACTOR, !*MCD, c, deg_f; on EXP, MCD; % switch-setting if not(type_ratpoly(f,z)) then return nil; deg_f:= laurentdegree(f,z); c:= laurentcoeffn(f,z,deg_f); if ((f - c*z^deg_f) = 0) and freeof(c,z) then return t; return nil; end$ % ---------------------------------------------------------------------- algebraic procedure qgosper_qprimedispersion(f, g, q, qk); begin scalar !*EXP, !*FACTOR, !*GCD, !*MCD, n, m, a, b, c, d, j; on EXP, MCD; off GCD; % switch-setting f:= f; n:= laurentdegree(f,qk); if (n = 0) or (n neq laurentdegree(g,qk)) then return {}; m:= laurentldegree(f, qk); if (m = n) or (m neq laurentldegree(g, qk)) then return {}; a:= laurentcoeffn(f,qk,n); b:= laurentcoeffn(f,qk,m); c:= laurentcoeffn(g,qk,n); d:= laurentcoeffn(g,qk,m); on GCD; % switch-setting j:= a*d / (b*c); off GCD; % switch-setting if not type_homogeneous(j,q) then return {}; j:= laurentdegree(j,q) / (n-m); if not(fixp(j) and (-1 < j)) then return {}; m:= sub(qk=qk*q^j, g); c:= laurentcoeffn(m, qk, n); if ((c*f-a*m) = 0) then return j; return {}; end$ % ---------------------------------------------------------------------- algebraic procedure qgosper_qdispersionset_simple_factorlist(p, x); begin scalar !*EXP, !*FACTOR, !*GCD, !*LIMITEDFACTORS, !*MCD; on FACTOR, MCD; off GCD, LIMITEDFACTORS; % switch-setting p:= product2list(p); p:= (for each j in p collect if (arglength(j)>-1) and (part(j,0)=expt) and (fixp(part(j,2))) then part(j,1) else j); p:= select(not freeof(~z,x), p); return p; end$ % ---------------------------------------------------------------------- algebraic procedure qgosper_qdispersionset(qq, rr, q, qk); begin scalar disp, j; timing(qdispersionset); qq:= qgosper_qdispersionset_simple_factorlist(qq, qk); rr:= qgosper_qdispersionset_simple_factorlist(rr, qk); disp:= {}; for each f in qq do for each g in rr do begin j:= qgosper_qprimedispersion(f,g,q,qk); if (j neq {}) and not(j member disp) then disp:= j.disp; end; trace_qsum("dispersionset:", disp); timing(qdispersionset); return disp; end$ % ====================================================================== algebraic procedure qgosper_qupdate(pp, qq, rr, q, qk); begin scalar !*FACTOR, !*EXP, !*MCD, !*DIV, !*GCD, !*LIMITEDFACTORS, disp, g; timing(qupdate); on FACTOR, MCD, DIV; off LIMITEDFACTORS; % switch-setting disp:= qgosper_qdispersionset(qq, rr, q, qk); for each j in disp do begin on EXP; % switch-setting; g:= gcd(qq, sub(qk=qk*q^j,rr)); on FACTOR; % switch-setting if not freeof(g, qk) then begin qq:= qq / g; rr:= rr / sub(qk=qk/q^j, g); pp:= pp * (for l:=0:j-1 product sub(qk=qk/q^l, g)); end; % of if end; % of for trace_qsum("q-Gosper representation:", {pp, qq, rr}); timing(qupdate); return {pp, qq, rr}; end$ % ====================================================================== algebraic procedure qgosper_qdegreebound_q_exponent(f, q); begin scalar !*EXP, !*FACTOR, !*MCD, !*GCD, !*COMBINELOGS, !*EXPANDLOGS; on EXPANDLOGS, EXP, MCD, GCD; OFF COMBINELOGS; % switch-setting return log(f)/log(q); end$ % ---------------------------------------------------------------------- algebraic procedure qgosper_qdegreebound(pp, qq, rr, q, qk); begin scalar !*MCD, !*FACTOR, !*EXP, !*GCD, ldegpp,ldegqq,ldegrr,ldegff,dd,ee,degpp,degqq,degrr,degff; timing(qdegreebound); on EXP, MCD; off GCD; % switch-setting % untere Gradschranke ldegpp:= laurentldegree(pp, qk); ldegqq:= laurentldegree(qq, qk); ldegrr:= laurentldegree(rr, qk); if (ldegqq neq ldegrr) then ldegff:= ldegpp - min(ldegqq, ldegrr) else begin dd:= laurentcoeffn(qq, qk, ldegqq); ee:= laurentcoeffn(rr, qk, ldegqq); ee:= qgosper_qdegreebound_q_exponent(ee/dd, q); if fixp(ee) then ldegff:= min(ee,ldegpp) - ldegqq else ldegff:= ldegpp - ldegqq; end; % of else % obere Gradschranke degpp:= laurentdegree(pp, qk); degqq:= laurentdegree(qq, qk); degrr:= laurentdegree(rr, qk); if (degqq neq degrr) then degff:= degpp - max(degqq, degrr) else begin dd:= laurentcoeffn(qq, qk, degqq); ee:= laurentcoeffn(rr, qk, degqq); ee:= qgosper_qdegreebound_q_exponent(ee/dd, q); if fixp(ee) then degff:= max(ee,degpp) - degqq else degff:= degpp - degqq; end; % of else timing(qdegreebound); if (degff < ldegff) then return {}; return {ldegff, degff}; end$ % ====================================================================== symbolic procedure qsumrecursion_inds2arbcmplx(u); begin scalar solu, var, arbsubs, gl, tmp, j; solu:= car u; if not(freeof(solu, 'arbcomplex)) then return solu; if null(cdr(solu)) then return 'list.nil; if (caadr(solu) eq 'list) then solu:= 'list. cdadr(solu); solu:= cdr(solu); var:= cdr(reval cadr(u)); arbsubs:= nil; for each gl in solu do << tmp:= var; while (tmp neq nil) do << j:= car(tmp); tmp:= cdr(tmp); if pairp(gl) and not(freeof(caddr(gl),j)) then << arbsubs:= {'equal,j,prepsq(!*f2q(makearbcomplex()))}.arbsubs; var:= delete(j, var); >>; >>; >>; if (arbsubs eq nil) then return car u; arbsubs:= 'list . arbsubs; tmp:= nil; while (solu neq nil) do << gl:= car(solu); solu:= cdr(solu); if pairp(gl) then caddr(gl):= reval({'sub, arbsubs, caddr(gl)}); tmp:= gl . tmp; >>; tmp:= 'list . tmp; return tmp; end$ put('qsumrecursion_indets2arbcomplex, 'psopfn, 'qsumrecursion_inds2arbcmplx); % ====================================================================== algebraic procedure qgosper_qfindf(pqr, q, qk); begin scalar !*EXP, !*FACTOR, !*MCD, !*CRAMER, pp, qq, rr, d, var, f, a, i, eqn, solu; timing(qfindf); on EXP, MCD; % switch-setting pp:= part(pqr, 1); qq:= part(pqr, 2); rr:= part(pqr, 3); d:= qgosper_qdegreebound(pp, qq, rr, q, qk); trace_qsum("degreebounds:", d); if (d = {}) then return <<timing(qfindf); {}>>; var:= (for j:=part(d,1):part(d,2) collect (lisp gensym())); f:= (for j:=part(d,1):part(d,2) sum part(var,j-part(d,1)+1)*qk^j); eqn:= sub(qk=qk*q,qq)*f - rr*sub(qk=qk/q,f) - pp; eqn:= laurentcoeff(eqn,qk); on CRAMER; % switch-setting timing(solve); if (lisp !*qsum_nullspace) then solu:= nullspacesolve(eqn, var) else solu:= solve(eqn, var); timing(solve); on FACTOR; % switch-setting if (solu = {}) then return <<timing(qfindf); {}>>; solu:= qsumrecursion_indets2arbcomplex(solu, var); f:= sub(solu, f); for each j in var do if not(freeof(f,j)) then sub(j=(lisp mk!*sq !*f2q makearbcomplex()), f); timing(qfindf); return f; end$ % ====================================================================== % Old Version with f as laurentpolynomial: % f:= (for j:=part(d,1):part(d,2) sum part(var,j-part(d,1)+1)*qk^j); % eqn:= sub(qk=qk*q,qq)*f - rr*sub(qk=qk/q,f) - pp; % eqn:= laurentcoeff(eqn, qk); algebraic procedure qsumrecursion_qfindf_equations (pp, qq, rr, d, q, qk, sigma_var); begin scalar !*EXP, !*FACTOR, !*LIMITEDFACTORS, !*MCD, !*CRAMER, var, f, eqn, solu, ld; on EXP, MCD; % switch-setting var:= (for j:=part(d,1):part(d,2) collect (lisp gensym())); if (part(d,1) < 0) then begin f:= (for j:=0:part(d,2)-part(d,1) sum part(var,j+1)*qk^j); ld:= -part(d,1); eqn:= sub(qk=qk*q^2,qq)*sub(qk=qk*q,f) - sub(qk=qk*q,rr)*f* q^ld - sub(qk=qk*q,pp)*qk^ld*q^ld; end else begin f:= (for j:=part(d,1):part(d,2) sum part(var,j+part(d,1)+1)*qk^j); eqn:= sub(qk=qk*q^2,qq)*sub(qk=qk*q,f) - sub(qk=qk*q,rr)*f - sub(qk=qk*q,pp); end; var:= append(sigma_var, var); timing(solve); if (lisp !*qsum_nullspace) then begin eqn:= coeff(eqn, qk); for each i in var do factor i; on FACTOR, MCD; % switch-setting eqn:= eqn; solu:= nullspacesolve(eqn, var); for each i in var do remfac i; end else begin on CRAMER; % switch-setting eqn:= coeff(eqn, qk); solu:= solve(eqn, var); end; % of else timing(solve); if (solu = {}) then return {}; solu:= qsumrecursion_indets2arbcomplex(solu, var); if (lisp !*qsumrecursion_certificate) then << f:= sub(solu, f); >> else f:= nil; solu:= {f, select(qsumrecursion_has(~w,sigma_var), solu)}; if (lisp !*qsumrecursion_exp) and not(lisp !*qsum_nullspace) then on EXP % switch-setting else on FACTOR; % switch-setting solu:= reval solu; return solu; end$ % ====================================================================== symbolic procedure qsumrecursion_has(z, varlist); begin scalar has; has:= nil; repeat << varlist:= cdr varlist; has:= not freeof(z, car varlist); >> until null(cdr varlist) or has; return has; end$ symbolic operator qsumrecursion_has$ % ====================================================================== algebraic procedure qsumrecursion_qfindf(pqr, q, qk, sigma_var); begin scalar !*FACTOR, !*EXP, !*LIMITEDFACTORS, !*MCD, !*CRAMER, pp, qq, rr, d, var, f, a, i, eqn, solu; timing(qfindf); on EXP, MCD; % switch-setting pp:= part(pqr, 1); qq:= part(pqr, 2); rr:= part(pqr, 3); d:= qgosper_qdegreebound(pp, qq, rr, q, qk); trace_qsum("degreebounds:", d); if (d = {}) then return <<timing(qfindf); {}>>; solu:= qsumrecursion_qfindf_equations(pp, qq, rr, d, q, qk, sigma_var); timing(qfindf); return solu; end$ % ====================================================================== symbolic procedure qsumrecursion_range(x); begin scalar lo, hi; if (length(qsumrecursion_recrange!*) neq 3) or not(pairp(qsumrecursion_recrange!*) and (car(qsumrecursion_recrange!*) = 'list)) then << write "Global variable qsumrecursion_recrange!* must be a list"; write "of two positive integers: {lo,hi} with lo<=hi."; rederr "Invalid value of qsumrecursion_recrange!*"; >>; lo:= cadr(qsumrecursion_recrange!*); hi:= caddr(qsumrecursion_recrange!*); if not(fixp(lo) and fixp(hi) and (0<lo) and (lo<=hi)) then << write "Global variable qsumrecursion_recrange!* must be a list"; write "of two positive integers: {lo,hi} with lo<=hi."; rederr "Invalid value of qsumrecursion_recrange!*"; >>; if null(x) then return {'list, lo, hi}; if (length(x) neq 1) then rederr "Wrong type of arguments."; x:= car(x); if (fixp(x)) and (x > 0) then return {'list, x, x}; if atom(x) or (car(x) neq 'list) or (length(x) neq 3) then rederr "Wrong type of arguments."; x:= cdr(x); lo:= car(x); hi:= cdr(x); if not(fixp(lo) and fixp(hi) and (lo<=hi) and (0<lo)) then rederr "Wrong type of arguments."; return {'list, lo, hi}; end$ % ---------------------------------------------------------------------- symbolic procedure qsumrecursion_qhyper(arg); begin scalar nu, de, q, z, n; if (length(arg) < 5) then return nil; nu:= car(arg); if atom(nu) or (car(nu) neq 'list) then return nil; de:= cadr(arg); if atom(de) or (car(de) neq 'list) then return nil; arg:= cddr(arg); q:= car(arg); if not(idp(q)) then if atom(q) and (car(q) neq 'expt) or not(idp(cadr(q))) or not(fixp(caddr(q))) then return nil; z:= cadr(arg); n:= caddr(arg); if not(idp(n) or ((length(n) = 2) and idp(car n) and idp(cadr n))) then return nil; return t; end$ % ---------------------------------------------------------------------- symbolic procedure qsumrecursion(arg); begin scalar nargs, f, q, k, n, recrange, prefac, nu, de, z, func; arg:= (for each j in arg collect reval j); nargs:= length(arg); if (nargs < 4) or (7 < nargs) then rederr "Wrong number of arguments."; q:= cadr(arg); % Is it a call like qsumrecursion(f,q,k,func,n)? if idp(q) then begin f:= car(arg); arg:= cddr(arg); k:= car(arg); n:= cadr(arg); if not(idp(k)) and not(idp(n) or ((length(n) = 2) and idp(car n) and idp(cadr n))) then rederr "Wrong type of arguments."; if idp(n) then func:= 'summ else begin func:= car(n); n:= cadr(n); end; % of if recrange:= qsumrecursion_range(cddr(arg)); end else if qsumrecursion_qhyper(arg) then begin nu:= car(arg); de:= cadr(arg); q:= caddr(arg); arg:= cdddr(arg); z:= car(arg); k:= gensym(); n:= cadr(arg); if idp(n) then func:= 'summ else begin func:= car(n); n:= cadr(n); end; % of if f:= qphihyperterm(nu,de,q,z,k); if not(idp(q)) then q:= cadr(q); recrange:= qsumrecursion_range(cddr(arg)); end else if qsumrecursion_qhyper(cdr arg) then begin prefac:= car(arg); arg:= cdr(arg); nu:= car(arg); de:= cadr(arg); q:= caddr(arg); arg:= cdddr(arg); z:= car(arg); k:= gensym(); n:= cadr(arg); if idp(n) then func:= 'summ else begin func:= car(n); n:= cadr(n); end; % of if f:= qphihyperterm(nu,de,q,z,k); f:= aeval {'times, prefac, f}; if not(idp(q)) then q:= cadr(q); recrange:= qsumrecursion_range(cddr(arg)); end else rederr "Wrong type of arguments."; f:= qsumrecursion_eval(f,q,k,func,n,recrange); return f; end$ put('qsumrecursion, 'psopfn, 'qsumrecursion); % ---------------------------------------------------------------------- symbolic procedure qgosper(arg); begin scalar f, q, k, m, n; arg:= (for each j in arg collect reval(j)); if (length(arg) neq 3) and (length(arg) neq 5) then rederr "Wrong number of arguments."; f:= car(arg); q:= cadr(arg); k:= caddr(arg); if not(idp(q)) or not(idp(k)) then rederr "Wrong type of arguments."; if freeof(f,k) then << write "WARNING: Summand is independent of summation variable."; rederr "No q-hypergeometric antidifference exists."; >>; arg:= cdddr(arg); if not(null(arg)) then begin m:= car(arg); n:= cadr(arg); %if not(freeof(m,k)) or not(freeof(n,k)) then % rederr "Summation bounds contain the summation variable."; end; f:= qgosper_eval(f,q,k); if not(null(arg)) then begin f:= simp(f); if !*qgosper_down then m:= aeval {'plus, m, list('minus, 1)} else n:= aeval {'plus, n, 1}; f:= subtrsq(subsq(f,{k . n}), subsq(f,{k . m})); f:= mk!*sq(f); end; % of if return f; end$ put('qgosper, 'psopfn, 'qgosper); % ====================================================================== algebraic procedure qgosper_eval(a, q, k); begin scalar !*PRECISE, !*EXP, !*FACTOR, !*MCD, qk, pqr, f, redefmode; on FACTOR, MCD; off PRECISE; % switch-setting % Turn off function-has-been-redefined-messages. share redefmode; redefmode:= (lisp !*redefmsg); lisp (!*redefmsg:= nil); % Set new_simpexpt as standard which does more simplifications % on power-terms: copyd('simpexpt, 'new_simpexpt); qk:= (lisp gensym()); f:= down_qratio(a,k); % qsimpcomb_simpexpt shouldn't be necessary any longer (new_simpexpt!) % f:= qsimpcomb_simpexpt(down_qratio(a,k), q); if (lisp !*qsum_trace) then write "Applied substitution: ", q^k=k; !*qsumrecursion!@sub:= {qk=k}; trace_qsum("down ratio wrt. k:", sub(qk=k,f)); f:= (f where (q^k=>qk)); if not(freeof(f,k)) then rederr "Input term is probably not q-hypergeometric."; pqr:= qgosper_qupdate(1, num(f), den(f), q, qk); f:= qgosper_qfindf(pqr, q, qk); if (f = {}) then rederr "No q-hypergeometric antidifference exists."; if (lisp !*qgosper_down) then % Gosper downwards f:= sub(qk=q^(k+1), part(pqr,2)) * sub(qk=q^k, f/part(pqr,1)) * a else % Gosper upwards: f:= sub(qk=q^k, part(pqr,3)/part(pqr,1)) * sub(qk=q^(k-1), f) * a; if (lisp !*qgosper_specialsol) then f:= (f where (arbcomplex(~z) => 0)); % restore simpexpt and proper redefmsg-mode... copyd('simpexpt, 'original_simpexpt); lisp (!*redefmsg:= redefmode); return f; end$ % ====================================================================== % ====================================================================== algebraic procedure qsumrecursion_denom_lcm(dl); begin scalar !*FACTOR, !*EXP, !*GCD, !*MCD, g; on FACTOR, MCD, GCD; % switch-setting g:= (part(dl,1)*part(dl,2)/gcd(part(dl,1),part(dl,2))); if (length(dl) = 2) then return g; dl:= (for j:=3:length(dl) collect j); return qsumrecursion_denom_lcm(g . dl); end$ % ====================================================================== algebraic procedure qsumrecursion_denom(req, vars); begin scalar !*FACTOR, !*EXP, !*GCD, !*MCD, numer, denom; on FACTOR, MCD, GCD; % switch-setting numer:= (for each j in vars collect coeffn(req,j,1)*j); denom:= (for each j in numer collect den(j)); denom:= qsumrecursion_denom_lcm(denom); numer:= (for each j in numer collect j*denom); off FACTOR; off EXP; % lisp setq(!*really_off_exp,t); % switch-setting return (for each j in numer sum j); end$ % ====================================================================== algebraic procedure qsumrecursion_qratios(f, q, k, qk, n, qn); begin scalar !*FACTOR, !*EXP, !*MCD, !*GCD, !*LIMITEDFACTORS, kn_ratio; on FACTOR, MCD; off GCD, LIMITEDFACTORS; % switch-setting timing(qratios); kn_ratio:= {down_qratio(f,k), qratio(f,n)}; kn_ratio:= (kn_ratio where {q^k=>qk, q^n=>qn}); !*qsumrecursion!@sub:= {qk=k, qn=n}; if not freeof(kn_ratio,k) then %<<write kn_ratio; rederr "bad qratios...">>; rederr "Input term is probably not q-hypergeometric."; trace_qsum("Applied the substitutions:", {q^k=>k, q^n=>n}); trace_qsum("down ratio wrt. k:", part(kn_ratio,1)); trace_qsum("up ratio wrt. n:", part(kn_ratio,2)); timing(qratios); return kn_ratio; end$ % ====================================================================== algebraic procedure qsumrecursion_eval(f, q, k, summ, n, recrange); begin scalar !*PRECISE, !*FACTOR, !*EXP, !*MCD, !*GCD, !*LIMITEDFACTORS, redefmode, qk, qn, rk, rn, lo, hi, a, poly, sigmalist, record, pqr, fpol, solu, cert; timing(start); timing(qsumrecursion); on FACTOR, MCD; off PRECISE, GCD, LIMITEDFACTORS; % switch-setting % Turn off function-has-been-redefined-messages. share redefmode; redefmode:= (lisp !*redefmsg); lisp (!*redefmsg:= nil); % Set new_simpexpt as standard which does more simplifications % on power-terms: copyd('simpexpt, 'new_simpexpt); lo:= part(recrange, 1); hi:= part(recrange, 2); qk:= (lisp gensym()); qn:= (lisp gensym()); %clear sigma; operator sigma; rn:= qsumrecursion_qratios(f, q, k, qk, n, qn); rk:= part(rn, 1); if (lisp !*qsumrecursion_down) then rn:= 1 / sub(n=n-1, qn=qn/q, part(rn, 2)) else rn:= part(rn, 2); poly:= 1; record:= 0; sigmalist:= {}; repeat begin record:= record + 1; sigmalist:= append(sigmalist, {lisp intern gensym()}); %!*qsumrecursion!@sub:= append(!*qsumrecursion!@sub, % {first reverse sigmalist=sigma(record)}); if (lisp !*qsumrecursion_down) then a:= (for l:=0:record-1 product sub({n=n-l, qn=qn/q^l}, rn)) else a:= (for l:=0:record-1 product sub({n=n+l, qn=qn*q^l}, rn)); on GCD; % switch-setting??? poly:= poly + part(sigmalist,record)*a; fpol:= {}; if (record >= lo) then begin a:= rk * sub(qk=qk/q, den(poly)) / den(poly); off GCD; % switch-setting??? %trace_qsum("rat:=", a); pqr:= qgosper_qupdate(num(poly), num(a), den(a), q, qk); fpol:= qsumrecursion_qfindf(pqr, q, qk, sigmalist); end; end until (fpol neq {}) or (record = hi); if (fpol = {}) then rederr "Found no recursion. Use higher order."; solu:= part(fpol, 2); fpol:= part(fpol, 1); if (lisp !*qsumrecursion_down) then rec:= summ(n) + (for j:=1:record sum part(sigmalist,j)*summ(n-j)) else rec:= summ(n) + (for j:=1:record sum part(sigmalist,j)*summ(n+j)); if (lisp !*qsumrecursion_exp) then on EXP % switch-setting else on FACTOR; % switch-setting factor summ; rec:= sub(solu, rec); if (lisp !*qsumrecursion_certificate) then begin pqr:= sub(solu, pqr); cert:= den(rec) * sub(solu, poly); if (lisp !*qgosper_down) then << % Gosper downwards cert:= cert * sub(qk=qk*q,part(pqr,2))*fpol/part(pqr,1); a:= downward_antidifference; >> else <<% Gosper upwards: cert:= cert * part(pqr,3)/part(pqr,1)*sub(qk=qk/q,fpol); a:= upward_antidifference; >>; rec:= {num rec, cert, f, k, a}; end else rec:= num rec; timing(qsumrecursion); if (lisp !*qsumrecursion_profile) then qsumrecursion_qprofile(); % restore original simpexpt and redefmsg-mode... copyd('simpexpt, 'original_simpexpt); lisp (!*redefmsg:= redefmode); return sub(qn=q^n, qk=q^k, rec); end$ % ====================================================================== % ====================================================================== lisp setq(!*redefmsg, nth(!*qsumrecursion!@sub,1)); lisp setq(!*echo, nth(!*qsumrecursion!@sub,2)); lisp setq(!*output, nth(!*qsumrecursion!@sub,3)); endmodule; $end$