Artifact 90098c0365263f881369284d262af4e7b9ada3d7ae217af3b4e1df2ba4c7b4ee:
- Executable file
r38/packages/geometry/geoprover.tst
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 11499) [annotate] [blame] [check-ins using] [more...]
% GeoProver test file for Reduce, created on Jan 18 2003 load cali,geoprover; off nat; on echo; %in "$reduce/packages/geometry/supp.red"$ %############################################################### % % FILE: supp.red % AUTHOR: graebe % CREATED: 2/2002 % PURPOSE: Interface for the extended GEO syntax to Reduce % VERSION: $Id: supp.red,v 1.1 2002/12/26 16:27:22 compalg Exp $ algebraic procedure geo_simplify u; u; algebraic procedure geo_normal u; u; algebraic procedure geo_subs(a,b,c); sub(a=b,c); algebraic procedure geo_gbasis(polys,vars); begin setring(vars,{},lex); setideal(uhu,polys); return gbasis uhu; end; algebraic procedure geo_groebfactor(polys,vars,nondeg); begin setring(vars,{},lex); return groebfactor(polys,nondeg); end; algebraic procedure geo_normalf(p,polys,vars); begin setring(vars,{},lex); return p mod polys; end; algebraic procedure geo_eliminate(polys,vars,elivars); begin setring(vars,{},lex); return eliminate(polys,elivars); end; algebraic procedure geo_solve(polys,vars); solve(polys,vars); algebraic procedure geo_solveconstrained(polys,vars,nondegs); begin scalar u; setring(vars,{},lex); u:=groebfactor(polys,nondegs); return for each x in u join solve(x,vars); end; algebraic procedure geo_eval(con,sol); for each x in sol collect sub(x,con); % end; % Example Arnon % % The problem: % Let $ABCD$ be a square and $P$ a point on the line parallel to $BD$ % through $C$ such that $l(BD)=l(BP)$, where $l(BD)$ denotes the % distance between $B$ and $D$. Let $Q$ be the intersection point of % $BF$ and $CD$. Show that $l(DP)=l(DQ)$. % % The solution: vars_:=List(x1, x2, x3); % Points A__:=Point(0,0); B__:=Point(1,0); P__:=Point(x1,x2); % coordinates D__:=rotate(A__,B__,1/2); C__:=par_point(D__,A__,B__); Q__:=varpoint(D__,C__,x3); % polynomials polys_:=List(on_line(P__,par_line(C__,pp_line(B__,D__))), eq_dist(B__,D__,B__,P__), on_line(Q__,pp_line(B__,P__))); % conclusion con_:=eq_dist(D__,P__,D__,Q__); % solution gb_:=geo_gbasis(polys_,vars_); result_:=geo_normalf(con_,gb_,vars_); % Example CircumCenter_1 % % The problem: % The intersection point of the midpoint perpendiculars is the % center of the circumscribed circle. % % The solution: parameters_:=List(a1, a2, b1, b2, c1, c2); % Points A__:=Point(a1,a2); B__:=Point(b1,b2); C__:=Point(c1,c2); % coordinates M__:=intersection_point(p_bisector(A__,B__), p_bisector(B__,C__)); % conclusion result_:=List( eq_dist(M__,A__,M__,B__), eq_dist(M__,A__,M__,C__) ); % Example EulerLine_1 % % The problem: % Euler's line: The center $M$ of the circumscribed circle, % the orthocenter $H$ and the barycenter $S$ are collinear and $S$ % divides $MH$ with ratio 1:2. % % The solution: parameters_:=List(a1, a2, b1, b2, c1, c2); % Points A__:=Point(a1,a2); B__:=Point(b1,b2); C__:=Point(c1,c2); % coordinates S__:=intersection_point(median(A__,B__,C__),median(B__,C__,A__)); M__:=intersection_point(p_bisector(A__,B__), p_bisector(B__,C__)); H__:=intersection_point(altitude(A__,B__,C__),altitude(B__,C__,A__)); % conclusion result_:=List(is_collinear(M__,H__,S__), sqrdist(S__,fixedpoint(M__,H__,1/3))); % Example Brocard_3 % % The problem: % Theorem about the Brocard points: % Let $\Delta\,ABC$ be a triangle. The circles $c_1$ through $A,B$ and % tangent to $g(AC)$, $c_2$ through $B,C$ and tangent to $g(AB)$, and % $c_3$ through $A,C$ and tangent to $g(BC)$ pass through a common % point. % % The solution: parameters_:=List(u1, u2); % Points A__:=Point(0,0); B__:=Point(1,0); C__:=Point(u1,u2); % coordinates M_1_:=intersection_point(altitude(A__,A__,C__),p_bisector(A__,B__)); M_2_:=intersection_point(altitude(B__,B__,A__),p_bisector(B__,C__)); M_3_:=intersection_point(altitude(C__,C__,B__),p_bisector(A__,C__)); c1_:=pc_circle(M_1_,A__); c2_:=pc_circle(M_2_,B__); c3_:=pc_circle(M_3_,C__); P__:=other_cc_point(B__,c1_,c2_); % conclusion result_:= on_circle(P__,c3_); % Example Feuerbach_1 % % The problem: % Feuerbach's circle or nine-point circle: The midpoint $N$ of $MH$ is % the center of a circle that passes through nine special points, the % three pedal points of the altitudes, the midpoints of the sides of the % triangle and the midpoints of the upper parts of the three altitudes. % % The solution: parameters_:=List(u1, u2, u3); % Points A__:=Point(0,0); B__:=Point(u1,0); C__:=Point(u2,u3); % coordinates H__:=intersection_point(altitude(A__,B__,C__),altitude(B__,C__,A__)); D__:=intersection_point(pp_line(A__,B__),pp_line(H__,C__)); M__:=intersection_point(p_bisector(A__,B__), p_bisector(B__,C__)); N__:=midpoint(M__,H__); % conclusion result_:=List( eq_dist(N__,midpoint(A__,B__),N__,midpoint(B__,C__)), eq_dist(N__,midpoint(A__,B__),N__,midpoint(H__,C__)), eq_dist(N__,midpoint(A__,B__),N__,D__) ); % Example FeuerbachTangency_1 % % The problem: % For an arbitrary triangle $\Delta\,ABC$ Feuerbach's circle (nine-point % circle) is tangent to its 4 tangent circles. % % The solution: vars_:=List(x1, x2); parameters_:=List(u1, u2); % Points A__:=Point(0,0); B__:=Point(2,0); C__:=Point(u1,u2); P__:=Point(x1,x2); % coordinates M__:=intersection_point(p_bisector(A__,B__), p_bisector(B__,C__)); H__:=intersection_point(altitude(A__,B__,C__),altitude(B__,C__,A__)); N__:=midpoint(M__,H__); c1_:=pc_circle(N__,midpoint(A__,B__)); Q__:=pedalpoint(P__,pp_line(A__,B__)); % polynomials polys_:=List(on_bisector(P__,A__,B__,C__), on_bisector(P__,B__,C__,A__)); % conclusion con_:=is_cc_tangent(pc_circle(P__,Q__),c1_); % solution gb_:=geo_gbasis(polys_,vars_); result_:=geo_normalf(con_,gb_,vars_); % Example GeneralizedFermatPoint_1 % % The problem: % A generalized theorem about Napoleon triangles: % Let $\Delta\,ABC$ be an arbitrary triangle and $P,Q$ and $R$ the third % vertex of isosceles triangles with equal base angles erected % externally on the sides $BC, AC$ and $AB$ of the triangle. Then the % lines $g(AP), g(BQ)$ and $g(CR)$ pass through a common point. % % The solution: vars_:=List(x1, x2, x3, x4, x5); parameters_:=List(u1, u2, u3); % Points A__:=Point(0,0); B__:=Point(2,0); C__:=Point(u1,u2); P__:=Point(x1,x2); Q__:=Point(x3,x4); R__:=Point(x5,u3); % polynomials polys_:=List(eq_dist(P__,B__,P__,C__), eq_dist(Q__,A__,Q__,C__), eq_dist(R__,A__,R__,B__), eq_angle(R__,A__,B__,P__,B__,C__), eq_angle(Q__,C__,A__,P__,B__,C__)); % conclusion con_:=is_concurrent(pp_line(A__,P__), pp_line(B__,Q__), pp_line(C__,R__)); % solution sol_:=geo_solve(polys_,vars_); result_:=geo_eval(con_,sol_); % Example TaylorCircle_1 % % The problem: % Let $\Delta\,ABC$ be an arbitrary triangle. Consider the three % altitude pedal points and the pedal points of the perpendiculars from % these points onto the the opposite sides of the triangle. Show that % these 6 points are on a common circle, the {\em Taylor circle}. % % The solution: parameters_:=List(u1, u2, u3); % Points A__:=Point(u1,0); B__:=Point(u2,0); C__:=Point(0,u3); % coordinates P__:=pedalpoint(A__,pp_line(B__,C__)); Q__:=pedalpoint(B__,pp_line(A__,C__)); R__:=pedalpoint(C__,pp_line(A__,B__)); P_1_:=pedalpoint(P__,pp_line(A__,B__)); P_2_:=pedalpoint(P__,pp_line(A__,C__)); Q_1_:=pedalpoint(Q__,pp_line(A__,B__)); Q_2_:=pedalpoint(Q__,pp_line(B__,C__)); R_1_:=pedalpoint(R__,pp_line(A__,C__)); R_2_:=pedalpoint(R__,pp_line(B__,C__)); % conclusion result_:=List( is_concyclic(P_1_,P_2_,Q_1_,Q_2_), is_concyclic(P_1_,P_2_,Q_1_,R_1_), is_concyclic(P_1_,P_2_,Q_1_,R_2_)); % Example Miquel_1 % % The problem: % Miquels theorem: Let $\Delta\,ABC$ be a triangle. Fix arbitrary points % $P,Q,R$ on the sides $AB, BC, AC$. Then the three circles through each % vertex and the chosen points on adjacent sides pass through a common % point. % % The solution: parameters_:=List(c1, c2, u1, u2, u3); % Points A__:=Point(0,0); B__:=Point(1,0); C__:=Point(c1,c2); % coordinates P__:=varpoint(A__,B__,u1); Q__:=varpoint(B__,C__,u2); R__:=varpoint(A__,C__,u3); X__:=other_cc_point(P__,p3_circle(A__,P__,R__),p3_circle(B__,P__,Q__)); % conclusion result_:=on_circle(X__,p3_circle(C__,Q__,R__)); % Example PappusPoint_1 % % The problem: % Let $A,B,C$ and $P,Q,R$ be two triples of collinear points. Then by % the Theorem of Pappus the intersection points $g(AQ)\wedge g(BP), % g(AR)\wedge g(CP)$ and $g(BR)\wedge g(CQ)$ are collinear. % % Permuting $P,Q,R$ we get six such {\em Pappus lines}. Those % corresponding to even resp. odd permutations are concurrent. % % The solution: parameters_:=List(u1, u2, u3, u4, u5, u6, u7, u8); % Points A__:=Point(u1,0); B__:=Point(u2,0); P__:=Point(u4,u5); Q__:=Point(u6,u7); % coordinates C__:=varpoint(A__,B__,u3); R__:=varpoint(P__,Q__,u8); % conclusion result_:=is_concurrent(pappus_line(A__,B__,C__,P__,Q__,R__), pappus_line(A__,B__,C__,Q__,R__,P__), pappus_line(A__,B__,C__,R__,P__,Q__)); % Example IMO/36_1 % % The problem: % Let $A,B,C,D$ be four distinct points on a line, in that order. The % circles with diameters $AC$ and $BD$ intersect at the points $X$ and % $Y$. The line $XY$ meets $BC$ at the point $Z$. Let $P$ be a point on % the line $XY$ different from $Z$. The line $CP$ intersects the circle % with diameter $AC$ at the points $C$ and $M$, and the line $BP$ % intersects the circle with diameter $BD$ at the points $B$ and % $N$. Prove that the lines $AM, DN$ and $XY$ are concurrent. % % The solution: vars_:=List(x1, x2, x3, x4, x5, x6); parameters_:=List(u1, u2, u3); % Points X__:=Point(0,1); Y__:=Point(0,-1); M__:=Point(x1,x2); N__:=Point(x3,x4); % coordinates P__:=varpoint(X__,Y__,u3); Z__:=midpoint(X__,Y__); l_:=p_bisector(X__,Y__); B__:=line_slider(l_,u1); C__:=line_slider(l_,u2); A__:=line_slider(l_,x5); D__:=line_slider(l_,x6); % polynomials polys_:=List(is_concyclic(X__,Y__,B__,N__), is_concyclic(X__,Y__,C__,M__), is_concyclic(X__,Y__,B__,D__), is_concyclic(X__,Y__,C__,A__), is_collinear(B__,P__,N__), is_collinear(C__,P__,M__)); % constraints nondeg_:=List(x5-u2,x1-u2,x6-u1,x3-u1); % conclusion con_:=is_concurrent(pp_line(A__,M__),pp_line(D__,N__),pp_line(X__,Y__)); % solution sol_:=geo_solveconstrained(polys_,vars_,nondeg_); result_:=geo_eval(con_,sol_); % Example IMO/43_2 % % The problem: % % No verbal problem description available % % The solution: vars_:=List(x1, x2); parameters_:=List(u1); % Points B__:=Point(-1,0); C__:=Point(1,0); % coordinates O__:=midpoint(B__,C__); gamma_:=pc_circle(O__,B__); D__:=circle_slider(O__,B__,u1); E__:=circle_slider(O__,B__,x1); F__:=circle_slider(O__,B__,x2); A__:=sym_point(B__,pp_line(O__,D__)); J__:=intersection_point(pp_line(A__,C__), par_line(O__, pp_line(A__,D__))); m_:=p_bisector(O__,A__); P_1_:=pedalpoint(J__,m_); P_2_:=pedalpoint(J__,pp_line(C__,E__)); P_3_:=pedalpoint(J__,pp_line(C__,F__)); % polynomials polys_:=List(on_line(E__,m_), on_line(F__,m_)); % constraints nondegs_:=List(x1-x2); % conclusion con_:=List(eq_dist(J__,P_1_,J__,P_2_), eq_dist(J__,P_1_,J__,P_3_)); % solution sol_:=geo_solveconstrained(polys_,vars_,nondegs_); result_:=geo_simplify(geo_eval(con_,sol_)); showtime; end;