Artifact 8d046f770a36c1916d9f7e8f936effef85ff7f46466c0ae299219af8e761ec57:
- File
r35/lib/pmrules.red
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 1969) [annotate] [blame] [check-ins using] [more...]
module pmrules; % Basic rules for PM pattern matcher. % Author: Kevin McIsaac. create!-package('(pmrules), '(contrib pm)); % Other packages needed. load!-package 'pm; algebraic; % Define logical operators; % These routines are used so often they should be coded in LISP % for efficiency. operator ~; deflist('((!~ !~)),'unary); %precedence ~,not; infix &; deflist('((!& !&)),'unary); precedence &, and; infix |; deflist('((!| !|)),'unary); precedence |, or; flag('( & |), 'nary); flag('( & |),'symmetric); &(t) :- t; % We must have this else the fourth rule => &(t) -> &() -> 0 &(0) :- 0; &(0, ??b) :- 0; &(t, ??b) ::- &(??b); &(?a,?a,??b) ::- &(?a,??b); &(?a,~?a,??b) ::- 0; |(t) :- t; |(0) :- 0; |(t,??a) :- t; |(0,??a) ::- |(??a); |(?a,?a,??b) ::- |(?a,??b); |(?a,~?a) :- t; |(?a,~?a,??b) ::- |(??b); ~(t) :- 0; ~(0) :- t; % Define SMP predicates in terms of their REDUCE equivalents. symbolic procedure simpbool u; begin scalar x; x := get(car u,'boolfn) or car u; u := for each j in cdr u collect reval j; u := apply (x, u); return (if u then !*k2f T else 0) ./ 1 end; flag('(numberp fixp), 'full); put('numberp,'simpfn,'simpbool); put('fixp,'simpfn,'simpbool); operator numbp, posp, intp, natp, oddp, evnp, complexp, listp; numbp(?n _=numberp(?n)) :- t; numbp(?n/?m _=(numberp(?n)&numberp(?m))) :- t; posp(?n _=(numbp(?n)&?n > 0)) :- t; posp(?n _=(numbp(?n)&~(?n > 0))) :- 0; intp(?n _=(numbp(?n)&fixp(?n))) :- t; intp(?n _=(numbp(?n)&~ fixp(?n))) :- 0; natp(?i _=(numbp(?i)& intp(?i)&?i>0)) :-t; natp(?i _=(numbp(?i)&~(intp(?i)&?i>0))) :- 0; oddp(?x _=(numbp(?x)&intp((?x+1)/2))) :- t; oddp(?x _=(numbp(?x)&~ intp((?x+1)/2))) :- 0; evnp(?x _=(numbp(?x)&intp(?x/2))) :- t; evnp(?x _=(numbp(?x)&~ intp(?x/2))) :- 0; complexp(i) :- t; complexp(??b*i) :- t; complexp(??a + i) :- t; complexp(??a + ??b*i) :- t; listp({??x}) :- t; listp(?x) :- 'nil; %Polyp %Primep %Projp %Ratp %Contp %Fullp %Symbp endmodule; end;