Artifact 82e523bc5f260822ec17a514ebe151934e8941aa8edf47099c10a4bee0dcc5b9:
- File
r34.3/src/hephys.red
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 23862) [annotate] [blame] [check-ins using] [more...]
- File
r35/src/hephys.red
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 23862) [annotate] [blame] [check-ins using]
module hephys; % Support for high energy physics calculations. % Author: Anthony C. Hearn. % Generalizations for n dimensional vector and gamma algebra by % Gastmans, Van Proeyen and Verbaeten, University of Leuven, Belgium. % Copyright (c) 1991 The RAND Corporation. All rights reserved. create!-package('(hephys),'(appl)); fluid '(!*sub2 ndims!*); global '(defindices!* indices!* mul!* ncmp!* ndim!*); defindices!* := nil; % Deferred indices in N dim calculations. indices!* := nil; % List of indices in High Energy Physics % tensor expressions. ndim!* := 4; % Number of dimensions in gamma algebra. % *********************** SOME DECLARATIONS ************************* deflist ('((cons simpdot)),'simpfn); flag('(cons),'symmetric); % Since CONS is used in algebraic mode % only for High Energy Physics expressions. put('vector,'stat,'rlis); % put('vector,'formfn,'formvector); %symbolic procedure formvector(u,vars,mode); % if mode eq 'algebraic % then list('vector1,'list . formlis(cdr u,vars,'algebraic)) % else u; symbolic procedure vector u; vector1 u; symbolic procedure vector1 u; for each x in u do begin scalar y; if not idp x or (y := gettype x) and y neq 'hvector then typerr(list(y,x),"high energy vector") else put(x,'rtype,'hvector) end; put('hvector,'fn,'vecfn); put('hvector,'evfn,'veval); put('g,'simpfn,'simpgamma); flagop nospur; flag ('(g),'noncom); symbolic procedure index u; begin vector1 u; rmsubs(); indices!* := union(indices!*,u) end; symbolic procedure remind u; begin indices!* := setdiff(indices!*,u) end; symbolic procedure mass u; if null car u then rerror(hephys,1,"No arguments to MASS") else <<for each x in u do put(cadr x,'rtype,'hvector); for each x in u do put(cadr x,'mass,caddr x)>>; symbolic procedure getmas u; (if x then x else rerror(hephys,2,list(u,"has no mass"))) where x=get(u,'mass); symbolic procedure vecdim u; begin ndim!* := car u end; symbolic procedure mshell u; begin scalar x,z; a: if null u then return let0 z; x := getmas car u; z := list('equal,list('cons,car u,car u),list('expt,x,2)) . z; u := cdr u; go to a end; rlistat '(vecdim index mass mshell remind vector); % ******** FUNCTIONS FOR SIMPLIFYING HIGH ENERGY EXPRESSIONS ********* symbolic procedure veval(u,v); begin scalar z; for each x in nssimp(u,'hvector) do <<if null cdr x then rerror(hephys,3,"Missing vector") else if cddr x then msgpri("Redundant vector in",cdr x,nil,nil,t); z := aconc!*(z,retimes(prepsq car x . cdr x))>>; return replus z end; symbolic procedure vmult u; begin scalar z; z := list list(1 . 1); a: if null u then return z; z := vmult1(nssimp(car u,'hvector),z); if null z then return; u := cdr u; go to a end; symbolic procedure vmult1(u,v); begin scalar z; if null v then return; a: if null u then return z else if cddar u then msgpri("Redundant vector in",cdar u,nil,nil,t); z := nconc!*(z,mapcar(v,function (lambda j; multsq(car j,caar u) . append(cdr j,cdar u)))); u := cdr u; go to a end; symbolic procedure simpdot u; mkvarg(u,function dotord); symbolic procedure dotord u; <<if xnp(u,indices!*) and not ('isimpq memq mul!*) then mul!* := aconc!*(mul!*,'isimpq) else nil; if 'a memq u then rerror(hephys,4, "A represents only gamma5 in vector expressions") else mksq('cons . ord2(car u,carx(cdr u,'dot)),1)>>; symbolic procedure mkvarg(u,v); begin scalar z; u := vmult u; z := nil ./ 1; a: if null u then return z; z := addsq(multsq(apply1(v,cdar u),caar u),z); u := cdr u; go to a end; symbolic procedure spur u; <<rmsubs(); map(u,function (lambda j; <<remflag(list car j,'nospur); remflag(list car j,'reduce)>>))>>; rlistat '(spur); symbolic procedure simpgamma u; if null u or null cdr u then rerror(hephys,5,"Missing arguments for G operator") else begin scalar z; if not ('isimpq memq mul!*) then mul!*:= aconc!*(mul!*,'isimpq); ncmp!* := t; z := nil ./ 1; for each j in vmult cdr u do z := addsq(multsq(mksq('g . car u . cdr j,1),car j),z); return z end; symbolic procedure simpeps u; mkvarg(u,function epsord); symbolic procedure epsord u; if repeats u then nil ./ 1 else mkepsq u; symbolic procedure mkepsk u; % U is of the form (v1 v2 v3 v4). % Value is <sign flag> . <kernel for EPS(v1,v2,v3,v4)>. begin scalar x; if xnp(u,indices!*) and not 'isimpq memq mul!* then mul!* := aconc!*(mul!*,'isimpq); x := ordn u; u := permp(x,u); return u . ('eps . x) end; symbolic procedure mkepsq u; (lambda x; (lambda y; if null car x then negsq y else y) mksq(cdr x,1)) mkepsk u; % ** FUNCTIONS FOR SIMPLIFYING VECTOR AND GAMMA MATRIX EXPRESSIONS ** symbolic smacro procedure mkg(u,l); % Value is the standard form for G(L,U). mksf('g . l . u); symbolic smacro procedure mka l; % Value is the standard form for G(L,A). mksf list('g,l,'a); symbolic smacro procedure mkgamf(u,l); mksf('g . (l . u)); symbolic procedure mkg1(u,l); if not flagp(l,'nospur) then mkg(u,l) else mkgamf(u,l); symbolic smacro procedure mkpf(u,v); multpf(u,v); symbolic procedure mkf(u,v); multf(u,v); symbolic procedure multd!*(u,v); if u=1 then v else multd(u,v); % onep symbolic smacro procedure addfs(u,v); addf(u,v); symbolic smacro procedure multfs(u,v); % U and V are pseudo standard forms. % Value is pseudo standard form for U*V. multf(u,v); put('rcons,'cleanupfn,'isimpa); symbolic procedure isimpa(u,v); if eqcar(u,'list) then u else !*q2a1(isimpq simp u,v); symbolic procedure isimpq u; begin scalar ndims!*; ndims!* := simp ndim!*; if denr ndims!* neq 1 then <<!*sub2 := t; ndims!* := multpf(mksp(list('recip,denr ndims!*),1), numr ndims!*)>> else ndims!* := numr ndims!*; a: u := isimp1(numr u,indices!*,nil,nil,nil) ./ denr u; if defindices!* then <<indices!* := union(defindices!*,indices!*); defindices!* := nil; go to a>> else if null !*sub2 then return u else return resimp u end; symbolic procedure isimp1(u,i,v,w,x); if null u then nil else if domainp u then if x then multd(u,spur0(car x,i,v,w,cdr x)) else if v then rerror(hephys,6,"Unmatched index" . for each j in v collect car j) else if w then multfs(emult w,isimp1(u,i,v,nil,x)) else u else addfs(isimp2(car u,i,v,w,x),isimp1(cdr u,i,v,w,x)); symbolic procedure isimp2(u,i,v,w,x); begin scalar z; if atom (z := caar u) then go to a else if car z eq 'cons and xnp(cdr z,i) then return dotsum(u,i,v,w,x) else if car z eq 'g then go to b else if car z eq 'eps then return esum(u,i,v,w,x); a: return mkpf(car u,isimp1(cdr u,i,v,w,x)); b: z := gadd(appn(cddr z,cdar u),x,cadr z); return isimp1(multd!*(nb car z,cdr u),i,v,w,cdr z) end; symbolic procedure nb u; if u then 1 else -1; symbolic smacro procedure mkdot(u,v); % Returns a standard form for U . V. mksf('cons . ord2(u,v)); symbolic procedure dotsum(u,i,v,w,x); begin scalar i1,n,u1,u2,v1,y,z,z1; n := cdar u; if not (car (u1 := cdaar u) member i) then u1 := reverse u1; u2 := cadr u1; u1 := car u1; v1 := cdr u; if n=2 then go to h else if n neq 1 then typerr(n,"index power"); a: if u1 member i then go to a1 else if null (z := mkdot(u1,u2)) then return nil else return mkf(z,isimp1(v1,i1,v,w,x)); a1: i1 := delete(u1,i); if u1 eq u2 then return multf(ndims!*,isimp1(v1,i1,v,w,x)) else if not (z := bassoc(u1,v)) then go to c else if u2 member i then go to d; if u1 eq car z then u1 := cdr z else u1 := car z; go to e; c: if z := memlis(u1,x) then return isimp1(v1, i1, v, w, subst(u2,u1,z) . delete(z,x)) else if z := memlis(u1,w) then return esum((('eps . subst(u2,u1,z)) . 1) . v1, i1, v, delete(z,w), x) else if u2 member i and null y then go to g; return isimp1(v1,i,(u1 . u2) . v,w,x); d: z1 := u1; u1 := u2; if z1 eq car z then u2 := cdr z else u2 := car z; e: i := i1; v := delete(z,v); go to a; g: y := t; z := u1; u1 := u2; u2 := z; go to a1; h: if u1 eq u2 then rerror(hephys,7, "2 invalid as repeated index power"); i := i1 := delete(u1,i); u1 := u2; go to a end; symbolic procedure mksf u; % U is a non-unique kernel. % Value is a (possibly substituted) standard form for U. begin scalar x; x := mksq(u,1); if denr x=1 then return numr x; !*sub2 := t; return !*p2f mksp(u,1) end; % ********* FUNCTIONS FOR SIMPLIFYING DIRAC GAMMA MATRICES ********** symbolic procedure gadd(u,v,l); begin scalar w,x; integer n; n := 0; % Number of gamma5 interchanges. if not (x := atsoc(l,v)) then go to a; v := delete(x,v); w := cddr x; % List being built. x := cadr x; % True if gamma5 remains. a: if null u then return (evenp n . (l . x . w) . v) else if car u eq 'a then go to c else w := car u . w; b: u := cdr u; go to a; c: if ndims!* neq 4 then rerror(hephys,8,"Gamma5 not allowed unless vecdim is 4"); x := not x; n := length w + n; go to b end; % ***** FUNCTIONS FOR COMPUTING TRACES OF DIRAC GAMMA MATRICES ******* symbolic procedure spur0(u,i,v1,v2,v3); begin scalar l,w,i1,kahp,n,z; l := car u; n := 1; z := cadr u; u := reverse cddr u; if z then u := 'a . u; % Gamma5 remains. if null u then go to end1 else if null flagp(l,'nospur) then if car u eq 'a and (length u<5 or hevenp u) or not car u eq 'a and not hevenp u then return nil else if null i then <<w := reverse u; go to end1>>; a: if null u then go to end1 else if car u member i then if car u member cdr u then <<if car u eq cadr u then <<i := delete(car u,i); u := cddr u; n := multf(n,ndims!*); go to a>>; kahp := t; i1 := car u . i1; go to a1>> else if car u member i1 then go to a1 else if z := bassoc(car u,v1) then <<v1 := delete(z,v1); i := delete(car w,i); u := other(car u,z) . cdr u; go to a>> else if z := memlis(car u,v2) then return if flagp(l,'nospur) and null v1 and null v3 and null cdr v2 then mkf(mkgamf(append(reverse w,u),l), multfs(n,mkepsf z)) else multd!*(n, isimp1(spur0( l . (nil . append(reverse u,w)),nil,nil,delete(z,v2),v3), i,v1,list z,nil)) else if z := memlis(car u,v3) then if ndims!*=4 then return spur0i(u,delete(car u,i),v1,v2, delete(z,v3),l,n,w,z) else <<indices!* := delete(car u,indices!*); i := delete(car u,i); if not car u memq defindices!* then defindices!* := car u . defindices!*; go to a1>> else rerror(hephys,9,list("Unmatched index",car u)); a1: w := car u . w; u := cdr u; go to a; end1: if kahp then if ndims!*=4 then <<z := multfs(n,kahane(reverse w,i1,l)); return isimp1(z,setdiff(i,i1),v1,v2,v3)>> else z := spurdim(w,i,l,nil,1) else z := spurr(w,l,nil,1); return if null z then nil else if get('eps,'klist) and not flagp(l,'nospur) then isimp1(multfs(n,z),i,v1,v2,v3) else multfs(z,isimp1(n,i,v1,v2,v3)) end; symbolic procedure spur0i(u,i,v1,v2,v3,l,n,w,z); begin scalar kahp,i1; if flagp(l,'nospur) and flagp(car z,'nospur) then rerror(hephys,10, "NOSPUR on more than one line not implemented") else if flagp(car z,'nospur) then kahp := car z; z := cdr z; i1 := car z; z := reverse cdr z; if i1 then z := 'a . z; i1 := nil; <<while null (car u eq car z) do <<i1 := car z . i1; z := cdr z>>; z := cdr z; u := cdr u; if flagp(l,'nospur) then <<w := w . (u . (i1 . z)); i1 := car w; z := cadr w; u := caddr w; w := cdddr w>>; w := reverse w; if null ((null u or not eqcar(w,'a)) and (u := append(u,w))) then <<if not hevenp u then n := - n; u := 'a . append(u,cdr w)>>; if kahp then l := kahp; z := mkf(mkg(reverse i1,l), multf(brace(u,l,i),multfs(n,mkg1(z,l)))); z := isimp1(z,i,v1,v2,v3); if null z or (z := quotf(z,2)) then return z else errach list('spur0,n,i,v1,v2,v3)>> end; symbolic procedure spurdim(u,i,l,v,n); begin scalar w,x,y,z,z1; integer m; a: if null u then return if null v then n else if flagp(l,'nospur) then multfs(n,mkgamf(v,l)) else multfs(n,sprgen v) else if not(car u memq cdr u) then <<v := car u . v; u := cdr u; go to a>>; x := car u; y := cdr u; w := y; m := 1; b: if x memq i then go to d else if not x eq car w then go to c else if null(w := mkdot(x,x)) then return z; if x memq i then w := ndims!*; return addfs(mkf(w,spurdim(delete(x,y),i,l,v,n)),z); c: z1 := mkdot(x,car w); if car w memq i then z := addfs(spurdim(subst(x,car w,remove(y,m)), i,l,v,2*n),z) else if z1 then z := addfs(mkf(z1,spurdim(remove(y,m),i,l,v,2*n)),z); w := cdr w; n := -n; m := m+1; go to b; d: while not(x eq car w) do <<z:= addfs(spurdim(subst(car w,x,remove(y,m)),i,l,v,2*n),z); w := cdr w; n := -n; m := m+1>>; return addfs(mkf(ndims!*,spurdim(delete(x,y),i,l,v,n)),z) end; symbolic procedure appn(u,n); if n=1 then u else append(u,appn(u,n-1)); symbolic procedure other(u,v); if u eq car v then cdr v else car v; symbolic procedure kahane(u,i,l); % The Kahane algorithm for Dirac matrix string reduction. % Ref: Kahane, J., Journ. Math. Phys. 9 (1968) 1732-1738. begin scalar p,r,v,w,x,y,z; integer k,m; k := 0; % mark: if eqcar(u,'a) then go to a1; a: p := not p; % Vector parity. if null u then go to d else if car u member i then go to c; a1: w := aconc!*(w,car u); b: u := cdr u; go to a; c: y := car u . p; z := (x . (y . w)) . z; x := y; w := nil; k := k+1; go to b; d: z := (nil . (x . w)) . z; % Beware ... end of string has opposite convention. % pass2: m := 1; l1: if null z then go to l9; u := caar z; x := cadar z; w := cddar z; z := cdr z; m := m+1; if null u then go to l2 else if (car u eq car x) and exc(x,cdr u) then go to l7; w := reverse w; r := t; l2: p := not exc(x,r); x := car x; y := nil; l3: if null z then rerror(hephys,11,"Unmatched index" . if y then if not atom cadar y then cadar y else if not atom caar y then caar y else nil else nil) else if (x eq car (i := cadar z)) and not exc(i,p) then go to l5 else if (x eq car (i := caar z)) and exc(i,p) then go to l4; y := car z . y; z := cdr z; go to l3; l4: x := cadar z; w := appr(cddar z,w); r := t; go to l6; l5: x := caar z; w := append(cddar z,w); r := nil; l6: z := appr(y,cdr z); if null x then go to l8 else if not eqcar(u,car x) then go to l2; l7: if w and cdr u then w := aconc!*(cdr w,car w); v := multfs(brace(w,l,nil),v); % v := ('brace . l . w) . v; go to l1; l8: v := mkg(w,l); % v := list('g . l . w); z := reverse z; k := k/2; go to l1; l9: u := 2**k; if not evenp(k-m) then u := - u; return multd!*(u,v) % return 'times . u . v; end; symbolic procedure appr(u,v); if null u then v else appr(cdr u,car u . v); symbolic procedure exc(u,v); if null cdr u then v else not v; symbolic procedure brace(u,l,i); if null u then 2 else if xnp(i,u) or flagp(l,'nospur) then addf(mkg1(u,l),mkg1(reverse u,l)) else if car u eq 'a then if hevenp u then addfs(mkg(u,l), negf mkg('a . reverse cdr u,l)) else mkf(mka l,spr2(cdr u,l,2,nil)) else if hevenp u then spr2(u,l,2,nil) else spr1(u,l,2,nil); symbolic procedure spr1(u,l,n,b); if null u then nil else if null cdr u then multd!*(n,mkg1(u,l)) else begin scalar m,x,z; x := u; m := 1; a: if null x then return z; z:= addfs(mkf(mkg1(list car x,l), if null b then spurr(remove(u,m),l,nil,n) else spr1(remove(u,m),l,n,nil)), z); x := cdr x; n := - n; m := m+1; go to a end; symbolic procedure spr2(u,l,n,b); if null cddr u and null b then multd!*(n,mkdot(car u,cadr u)) else (lambda x; if b then addfs(spr1(u,l,n,b),x) else x) addfs(spurr(u,l,nil,n), mkf(mka l,spurr(append(u,list 'a),l,nil,n))); symbolic procedure hevenp u; null u or not hevenp cdr u; symbolic procedure bassoc(u,v); if null v then nil else if u eq caar v or u eq cdar v then car v else bassoc(u,cdr v); symbolic procedure memlis(u,v); if null v then nil else if u member car v then car v else memlis(u,cdr v); symbolic procedure spurr(u,l,v,n); begin scalar w,x,y,z,z1; integer m; a: if null u then go to b else if car u member cdr u then go to g; v := car u . v; u := cdr u; go to a; b: return if null v then n else if flagp(l,'nospur) then multd!*(n,mkgamf(v,l)) else multd!*(n,sprgen v); g: x := car u; y := cdr u; w := y; m := 1; h: if not x eq car w then go to h1 else if null(w:= mkdot(x,x)) then return z else return addfs(mkf(w,spurr(delete(x,y),l,v,n)),z); h1: z1 := mkdot(x,car w); if z1 then z:= addfs(mkf(z1,spurr(remove(y,m),l,v,2*n)),z); w := cdr w; n := - n; m := m+1; go to h end; symbolic procedure sprgen v; begin scalar x,y,z; if not (car v eq 'a) then return sprgen1(v,t) else if null (x := comb(v := cdr v,4)) then return nil else if null cdr x then go to e; c: if null x then return multpf('i to 1,z); y := mkepsf car x; if asign(car x,v,1)=-1 then y := negf y; z := addf(multf(y,sprgen1(setdiff(v,car x),t)),z); d: x := cdr x; go to c; e: z := mkepsf car x; go to d end; symbolic procedure asign(u,v,n); if null u then n else asign(cdr u,v,asign1(car u,v,-1)*n); symbolic procedure asign1(u,v,n); if u eq car v then n else asign1(u,cdr v,-n); symbolic procedure sprgen1(u,b); if null u then nil else if null cddr u then (lambda x; if b then x else negf x) mkdot(car u,cadr u) else begin scalar w,x,y,z; x := car u; u := cdr u; y := u; a: if null u then return z else if null(w:= mkdot(x,car u)) then go to c; z := addf(multf(w,sprgen1(delete(car u,y),b)),z); c: b := not b; u := cdr u; go to a end; % ****************** FUNCTIONS FOR EPSILON ALGEBRA ****************** put('eps,'simpfn,'simpeps); symbolic procedure mkepsf u; (lambda x; (lambda y; if null car x then negf y else y) mksf cdr x) mkepsk u; symbolic procedure esum(u,i,v,w,x); begin scalar y,z,z1; z := car u; u := cdr u; if cdr z neq 1 then u := multf(exptf(mkepsf cdar z,cdr z-1),u); z := cdar z; a: if repeats z then return nil; b: if null z then return isimp1(u,i,v,reverse y . w,x) else if car z member i then <<if z1 := bassoc(car z,v) then <<v := delete(z1,v); i := delete(car z,i); z := append(reverse y,other(car z,z1) . cdr z); y := nil; go to a>> else if z1 := memlis(car z,w) then <<z := append(reverse y,z); y := intersection(i,intersection(z,z1)); return isimp1(multfs(emult1(z1,z,y),u), setdiff(i,y), v, delete(z1,w), x)>>>>; y := car z . y; z := cdr z; go to b end; symbolic procedure emult u; if null cdr u then mkepsf car u else if null cddr u then emult1(car u,cadr u,nil) else multfs(emult1(car u,cadr u,nil),emult cddr u); symbolic procedure emult1(u,v,i); (lambda (x,y); (lambda (m,n); if m=4 then 24*n else if m=3 then multd(6*n,mkdot(car x,car y)) else multd!*(n*(if m = 0 then 1 else m), car detq maplist(x, function (lambda k; maplist(y, function (lambda j; mkdot(car k,car j) . 1)))))) (length i, (lambda j; nb if permp(u,append(i,x)) then not j else j) permp(v,append(i,y)))) (setdiff(u,i),setdiff(v,i)); endmodule; end;