Artifact 7ba110f5f4216149544261f0a76818c14ba36dc9c5737ab8590205e36cf18897:
- Executable file
r37/packages/rataprx/rataprx.tst
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 1771) [annotate] [blame] [check-ins using] [more...]
- Executable file
r38/packages/rataprx/rataprx.tst
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 1771) [annotate] [blame] [check-ins using]
% Tests of the rataprx package. % Authors: Lisa Temme, Wolfram Koepf (koepf@zib.de) % periodic decimal representations rational2periodic(1/3); periodic2rational(ws); rational2periodic(-1/3); periodic2rational(ws); rational2periodic(1.2/3); periodic2rational(ws); rational2periodic(1/3.4); periodic2rational(ws); rational2periodic(1.2/3.4); periodic2rational(ws); rational2periodic(352673/3124); periodic2rational(ws); rational2periodic(53765/5216); periodic2rational(ws); % continued fractions % of numbers cfrac pi; cfrac(pi,3); cfrac(pi,20); oldprec:=precision 20; cfrac pi; cfrac(pi^2); cfrac(pi*e*sqrt(2)); precision oldprec; % of rational functions cfrac((x+2/3)^2/(6*x-5),x); cfrac((x+2/3)^2/(6*x-5),x,0); cfrac((x+2/3)^2/(6*x-5),x,1); cfrac((x+2/3)^2/(6*x-5),x,10); cfrac((x*8-7/2)^4/(x^5-2/3),x); cfrac((x*8-7/2)^4/(x^5-2/3),x,2); % of analytic functions cfrac(e^x,x,10); % default order is 4 cfrac(e^x,x); cfrac(x^2/(x-1)*e^x,x); cfrac(x^2/(x-1)*e^x,x,2); cfrac(atan(x),x,10); cfrac(asin(x),x,5); % not implemented cfrac(log(x),x,4); cfrac(asech(x),x,5); cfrac(sin sqrt x,x,4); % wrong input cfrac(1,x); cfrac(x,x,x); cfrac(x,x,x,5); % Pade representations pade(sin(x),x,0,3,3); pade(tanh(x),x,0,5,5); pade(atan(x),x,0,5,5); pade(1/(x*sin(x)),x,0,3,2); pade(sin(x)/x^2,x,0,10,1); pade(sin(x)/x^2,x,0,10,2); pade(sin(x)/x^2,x,0,10,3); pade(exp(x),x,0,10,10); pade(sin(x),x,0,20,20); % no Pade Approximation exists pade(exp(1/x),x,0,5,5); % wrong order pade(sin(x)/x^2,x,0,10,0); % not implemented pade(factorial(x),x,1,3,3); % extended Pade representations pade(asech(x),x,0,3,3); taylor(ws-asech(x),x,0,10); pade(sin(sqrt(x)),x,0,3,3); taylor(ws-sin(sqrt(x)),x,0,10); end;