Artifact 7ab12c468f1799e5b4b2ca99db323463a8c22ef0a45b03ecae7a735f3d19af06:
- Executable file
r37/packages/defint/definte.red
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 7599) [annotate] [blame] [check-ins using] [more...]
- Executable file
r38/packages/defint/definte.red
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 7599) [annotate] [blame] [check-ins using]
module definte; algebraic << laplace2_rules := { laplace2(1/~x,~f1,~x) => int(1/x*f1*e^(-s*x),x,0,infinity), laplace2(1/~x^(~a),~f1,~x) => int(1/x^a*f1*e^(-s*x),x,0,infinity), laplace2(1/sqrt(~x),~f1,~x)=> int(1/sqrt(x)*f1*e^(-s*x),x,0,infinity), laplace2(1/(sqrt(~x)*~x),~f1,~x) => int(1/(sqrt(x)*x)*f1*e^(-s*x),x,0,infinity), laplace2(1/(sqrt(~x)*~x^~a),~f1,~x) => int(1/(sqrt(x)*x^a)*f1*e^(-s*x),x,0,infinity), laplace2(~x^~a,~f1,~x) => int(x^a*f1*e^(-s*x),x,0,infinity), laplace2(~x,~f1,~x) => int(x*f1*e^(-s*x),x,0,infinity), laplace2(sqrt(~x),~f1,~x) => int(sqrt(x)*f1*e^(-s*x),x,0,infinity), laplace2(sqrt(~x)*~x,~f1,~x)=>int(sqrt(x)*x*f1*e^(-s*x),x,0,infinity), laplace2(sqrt(~x)*~x^~a,~f1,~x) => int(sqrt(x)*x^a*f1*e^(-s*x),x,0,infinity), laplace2(~b,~f1,~x) => int(b*f1*e^(-s*x),x,0,infinity), laplace2(~f1,~x) => int(f1*e^(-s*x),x,0,infinity) }; let laplace2_rules; hankel2_rules := { hankel2(1/~x,~f1,~x) => int(1/x*f1*besselj(n,2*(s*x)^(1/2)),x,0,infinity), hankel2(1/~x^(~a),~f1,~x) => int(1/x^a*f1*besselj(n,2*(s*x)^(1/2)),x,0,infinity), hankel2(1/sqrt(~x),~f1,~x) => int(1/sqrt(x)*f1*besselj(n,2*(s*x)^(1/2)),x,0,infinity), hankel2(1/(sqrt(~x)*~x),~f1,~x) => int(1/(sqrt(x)*x)*f1*besselj(n,2*(s*x)^(1/2)),x,0,infinity), hankel2(1/(sqrt(~x)*~x^~a),~f1,~x) => int(1/(sqrt(x)*x^a)*f1*besselj(n,2*(s*x)^(1/2)),x,0,infinity), hankel2(~x^~a,~f1,~x) => int(x^a*f1*besselj(n,2*(s*x)^(1/2)),x,0,infinity), hankel2(~x,~f1,~x) => int(x*f1*besselj(n,2*(s*x)^(1/2)),x,0,infinity), hankel2(sqrt(~x),~f1,~x) => int(sqrt(x)*f1*besselj(n,2*(s*x)^(1/2)),x,0,infinity), hankel2(sqrt(~x)*~x,~f1,~x) => int(sqrt(x)*x,f1,besselj(n,2*(s*x)^(1/2)),x,0,infinity), hankel2(sqrt(~x)*~x^~a,~f1,~x) => int(sqrt(x)*x^a*f1*besselj(n,2*(s*x)^(1/2)),x,0,infinity), hankel2(~b,~f1,~x) => int(b*f1*besselj(n,2*(s*x)^(1/2)),x,0,infinity), hankel2(~f1,~x) => int(f1*besselj(n,2*(s*x)^(1/2)),x,0,infinity) }; let hankel2_rules; Y_transform2_rules := { Y_transform2(1/~x,~f1,~x) => int(1/x*f1*bessely(n,2*(s*x)^(1/2)),x,0,infinity), Y_transform2(1/~x^(~a),~f1,~x) => int(1/x^a*f1*bessely(n,2*(s*x)^(1/2)),x,0,infinity), Y_transform2(1/sqrt(~x),~f1,~x) => int(1/sqrt(x)*f1*bessely(n,2*(s*x)^(1/2)),x,0,infinity), Y_transform2(1/(sqrt(~x)*~x),~f1,~x) => int(1/(sqrt(x)*x)*f1*bessely(n,2*(s*x)^(1/2)),x,0,infinity), Y_transform2(1/(sqrt(~x)*~x^~a),~f1,~x) => int(1/(sqrt(x)*x^a)*f1*bessely(n,2*(s*x)^(1/2)),x,0,infinity), Y_transform2(~x^~a,~f1,~x) => int(x^a*f1*bessely(n,2*(s*x)^(1/2)),x,0,infinity), Y_transform2(~x,~f1,~x) => int(x*f1*bessely(n,2*(s*x)^(1/2)),x,0,infinity), Y_transform2(sqrt(~x),~f1,~x) => int(sqrt(x)*f1*bessely(n,2*(s*x)^(1/2)),x,0,infinity), Y_transform2(sqrt(~x)*~x,~f1,~x) => int(sqrt(x)*x*f1*bessely(n,2*(s*x)^(1/2)),x,0,infinity), Y_transform2(sqrt(~x)*~x^~a,~f1,~x) => int(sqrt(x)*x^a*f1*bessely(n,2*(s*x)^(1/2)),x,0,infinity), Y_transform2(~b,~f1,~x) => int(b*f1*bessely(n,2*(s*x)^(1/2)),x,0,infinity), Y_transform2(~f1,~x) => int(f1*bessely(n,2*(s*x)^(1/2)),x,0,infinity) }; let Y_transform2_rules; K_transform2_rules := { K_transform2(1/~x,~f1,~x) => int(1/x*f1*besselK(n,2*(s*x)^(1/2)),x,0,infinity), K_transform2(1/~x^(~a),~f1,~x) => int(1/x^a*f1*besselK(n,2*(s*x)^(1/2)),x,0,infinity), K_transform2(1/sqrt(~x),~f1,~x) => int(1/sqrt(x)*f1*besselK(n,2*(s*x)^(1/2)),x,0,infinity), K_transform2(1/(sqrt(~x)*~x),~f1,~x) => int(1/(sqrt(x)*x)*f1*besselK(n,2*(s*x)^(1/2)),x,0,infinity), K_transform2(1/(sqrt(~x)*~x^~a),~f1,~x) => int(1/(sqrt(x)*x^a)*f1*besselK(n,2*(s*x)^(1/2)),x,0,infinity), K_transform2(~x^~a,~f1,~x) => int(x^a*f1*besselK(n,2*(s*x)^(1/2)),x,0,infinity), K_transform2(~x,~f1,~x) => int(x*f1*besselK(n,2*(s*x)^(1/2)),x,0,infinity), K_transform2(sqrt(~x),~f1,~x) => int(sqrt(x)*f1*besselK(n,2*(s*x)^(1/2)),x,0,infinity), K_transform2(sqrt(~x)*~x,~f1,~x) => int(sqrt(x)*x*f1*besselK(n,2*(s*x)^(1/2)),x,0,infinity), K_transform2(sqrt(~x)*~x^~a,~f1,~x) => int(sqrt(x)*x^a*f1*besselK(n,2*(s*x)^(1/2)),x,0,infinity), K_transform2(~b,~f1,~x) => int(b*f1*besselK(n,2*(s*x)^(1/2)),x,0,infinity), K_transform2(~f1,~x) => int(f1*besselK(n,2*(s*x)^(1/2)),x,0,infinity) }; let K_transform2_rules; struveh2_rules := { struveh2(1/~x,~f1,~x) => int(1/x*f1*struveh(n,2*(s*x)^(1/2)),x,0,infinity), struveh2(1/~x^(~a),~f1,~x) => int(1/x^a*f1*struveh(n,2*(s*x)^(1/2)),x,0,infinity), struveh2(1/sqrt(~x),~f1,~x) => int(1/sqrt(x)*f1*struveh(n,2*(s*x)^(1/2)),x,0,infinity), struveh2(1/(sqrt(~x)*~x),~f1,~x) => int(1/(sqrt(x)*x)*f1*struveh(n,2*(s*x)^(1/2)),x,0,infinity), struveh2(1/(sqrt(~x)*~x^~a),~f1,~x) => int(1/(sqrt(x)*x^a)*f1*struveh(n,2*(s*x)^(1/2)),x,0,infinity), struveh2(~x^~a,~f1,~x) => int(x^a*f1*struveh(n,2*(s*x)^(1/2)),x,0,infinity), struveh2(~x,~f1,~x) => int(x*f1*struveh(n,2*(s*x)^(1/2)),x,0,infinity), struveh2(sqrt(~x),~f1,~x) => int(sqrt(x)*f1*struveh(n,2*(s*x)^(1/2)),x,0,infinity), struveh2(sqrt(~x)*~x,~f1,~x) => int(sqrt(x)*x*f1*struveh(n,2*(s*x)^(1/2)),x,0,infinity), struveh2(sqrt(~x)*~x^~a,~f1,~x) => int(sqrt(x)*x^a*f1*struveh(n,2*(s*x)^(1/2)),x,0,infinity), struveh2(~b,~f1,~x) => int(b*f1*struveh(n,2*(s*x)^(1/2)),x,0,infinity), struveh2(~f1,~x) => int(f1*struveh(n,2*(s*x)^(1/2)),x,0,infinity) }; let struveh2_rules; fourier_sin2_rules := { fourier_sin2(1/~x,~f1,~x) => int(1/x*f1*sin(s*x),x,0,infinity), fourier_sin2(1/~x^(~a),~f1,~x) => int(1/x^a*f1*sin(s*x),x,0,infinity), fourier_sin2(1/sqrt(~x),~f1,~x) => int(1/sqrt(x)*f1*sin(s*x),x,0,infinity), fourier_sin2(1/(sqrt(~x)*~x),~f1,~x) => int(1/(sqrt(x)*x)*f1*sin(s*x),x,0,infinity), fourier_sin2(1/(sqrt(~x)*~x^~a),~f1,~x) => int(1/(sqrt(x)*x^a)*f1*sin(s*x),x,0,infinity), fourier_sin2(~x^~a,~f1,~x) => int(x^a*f1*sin(s*x),x,0,infinity), fourier_sin2(~x,~f1,~x) => int(x*f1*sin(s*x),x,0,infinity), fourier_sin2(sqrt(~x),~f1,~x)=> int(sqrt(x)*f1*sin(s*x),x,0,infinity), fourier_sin2(sqrt(~x)*~x,~f1,~x) => int(sqrt(x)*x*f1*sin(s*x),x,0,infinity), fourier_sin2(sqrt(~x)*~x^~a,~f1,~x) => int(sqrt(x)*x^a*f1*sin(s*x),x,0,infinity), fourier_sin2(~b,~f1,~x) => int(b*f1*sin(s*x),x,0,infinity), fourier_sin2(~f1,~x) => int(f1*sin(s*x),x,0,infinity) }; let fourier_sin2_rules; fourier_cos2_rules := { fourier_cos2(1/~x,~f1,~x) => int(1/x*f1*cos(s*x),x,0,infinity), fourier_cos2(1/~x^(~a),~f1,~x) => int(1/x^a*f1*cos(s*x),x,0,infinity), fourier_cos2(1/sqrt(~x),~f1,~x) => int(1/sqrt(x)*f1*cos(s*x),x,0,infinity), fourier_cos2(1/(sqrt(~x)*~x),~f1,~x) => int(1/(sqrt(x)*x)*f1*cos(s*x),x,0,infinity), fourier_cos2(1/(sqrt(~x)*~x^~a),~f1,~x) => int(1/(sqrt(x)*x^a)*f1*cos(s*x),x,0,infinity), fourier_cos2(~x^~a,~f1,~x) => int(x^a*f1*cos(s*x),x,0,infinity), fourier_cos2(~x,~f1,~x) => int(x*f1*cos(s*x),x,0,infinity), fourier_cos2(sqrt(~x),~f1,~x)=> int(sqrt(x)*f1*cos(s*x),x,0,infinity), fourier_cos2(sqrt(~x)*~x,~f1,~x) => int(sqrt(x)*x*f1*cos(s*x),x,0,infinity), fourier_cos2(sqrt(~x)*~x^~a,~f1,~x) => int(sqrt(x)*x^a*f1*cos(s*x),x,0,infinity), fourier_cos2(~b,~f1,~x) => int(b*f1*cos(s*x),x,0,infinity), fourier_cos2(~f1,~x) => int(f1*cos(s*x),x,0,infinity) }; let fourier_cos2_rules; >>; endmodule; end;