Artifact 79c19013b8919d03038a12500f162ff6c5def3ded9f297d02d22cdf710cc56f3:
- File
r34.1/xmpl/sum.tst
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 3470) [annotate] [blame] [check-ins using] [more...]
- File
r35/xmpl/sum.tst
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 3470) [annotate] [blame] [check-ins using]
- Executable file
r36/XMPL/SUM.TST
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 3470) [annotate] [blame] [check-ins using]
% Tests of the SUM package. % Author: Fujio Kako (kako@kako.math.sci.hiroshima-u.ac.jp) % 1) Summations. sum(n,n); for i:=2:10 do write sum(n**i,n); sum((n+1)**3,n); sum(x**n,n); sum(n**2*x**n,n); sum(1/n,n); sum(1/n/(n+2),n); sum(log (n/(n+1)),n); % 2) Expressions including trigonometric functions. sum(sin(n*x),n); sum(n*sin(n*x),n,1,k); sum(cos((2*r-1)*pi/n),r); sum(cos((2*r-1)*pi/n),r,1,n); sum(cos((2*r-1)*pi/(2*n+1)),r); sum(cos((2*r-1)*pi/(2*n+1)),r,1,n); sum(sin((2*r-1)*x),r,1,n); sum(cos((2*r-1)*x),r,1,n); sum(sin(n*x)**2,n); sum(cos(n*x)**2,n); sum(sin(n*x)*sin((n+1)*x),n); sum(sec(n*x)*sec((n+1)*x),n); sum(1/2**n*tan(x/2**n),n); sum(sin(r*x)*sin((r+1)*x),r,1,n); sum(sec(r*x)*sec((r+1)*x),r,1,n); sum(1/2**r*tan(x/2**r),r,1,n); sum(k*sin(k*x),k,1,n - 1); sum(k*cos(k*x),k,1,n - 1); sum(sin((2k - 1)*x),k,1,n); sum(sin(x + k*y),k,0,n); sum(cos(x + k*y),k,0,n); sum((-1)**(k - 1)*sin((2k - 1)*x),k,1,n + 1); sum((-1)**(k - 1)*cos((2k - 1)*x),k,1,n + 1); sum(r**k*sin(k*x),k,1,n - 1); sum(r**k*cos(k*x),k,0,n - 1); sum(sin(k*x)*sin((k + 1)*x),k,1,n); sum(sin(k*x)*sin((k + 2)*x),k,1,n); sum(sin(k*x)*sin((2k - 1)*x),k,1,n); % The next examples cannot be summed in closed form. sum(1/(cos(x/2**k)*2**k)**2,k,1,n); sum((2**k*sin(x/2**k)**2)**2,k,1,n); sum(tan(x/2**k)/2**k,k,0,n); sum(cos(k**2*2*pi/n),k,0,n - 1); sum(sin(k*pi/n),k,1,n - 1); % 3) Expressions including the factorial function. for all n,m such that fixp m let factorial(n+m)=if m > 0 then factorial(n+m-1)*(n+m) else factorial(n+m+1)/(n+m+1); sum(n*factorial(n),n); sum(n/factorial(n+1),n); sum((n**2+n-1)/factorial(n+2),n); sum(n*2**n/factorial(n+2),n); sum(n*x**n/factorial(n+2),n); for all n,m such that fixp m and m > 3 let factorial((n+m)/2)= factorial((n+m)/2-1)*((n+m)/2), factorial((n-m)/2)= factorial((n-m)/2+1)/((n-m)/2+1); sum(factorial(n-1/2)/factorial(n+1),n); for all n,m such that fixp m and m > 3 clear factorial((n+m)/2); for all n,m such that fixp m and m > 3 clear factorial((n-m)/2); % 4) Expressions including combination. operator comb; % Combination function. for all n ,m let comb(n,m)=factorial(n)/factorial(n-m)/factorial(m); sum((-1)**k*comb(n,k),k,1,m); sum(comb(n + p,q)/comb(n + r,q + 2),n,1,m); sum((-1)**(k + 1)*comb(n,k)/(k + 1),k,1,n); for all n ,m clear comb(n,m); for all n,m such that fixp m clear factorial(n+m); % 3) Examples taken from % "Decision procedure for indefinite hypergeometric summation" % Proc. Natl. Acad. Sci. USA vol. 75, no. 1 pp.40-42 (1978) % R. William Gosper, Jr. % % n % ____ 2 % f = || (b*k +c*k+d) % k=1 % % n % ____ 2 % g = || (b*k +c*k+e) % k=1 % operator f,gg; % gg used to avoid possible conflict with high energy % physics operator. for all n,m such that fixp m let f(n+m)=if m > 0 then f(n+m-1)*(b*(n+m)**2+c*(n+m)+d) else f(n+m+1)/(b*(n+m+1)**2+c*(n+m+1)+d); for all n,m such that fixp m let gg(n+m)=if m > 0 then gg(n+m-1)*(b*(n+m)**2+c*(n+m)+e) else gg(n+m+1)/(b*(n+m+1)**2+c*(n+m+1)+e); sum(f(n-1)/gg(n),n); sum(f(n-1)/gg(n+1),n); for all n,m such that fixp m clear f(n+m); for all n,m such that fixp m clear gg(n+m); clear f,gg; % 4) Products. prod(n/(n+2),n); prod(x**n,n); prod(e**(sin(n*x)),n); end;