Artifact 6b32ae7a7034ad3d1ce7d879696ab1c4e77bf449b14a0b3ecbdd6dd883619554:
- Executable file
r38/packages/misc/lie.rlg
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 3407) [annotate] [blame] [check-ins using] [more...]
Tue Feb 10 12:26:51 2004 run on Linux % test file for the Lie package % 1. n-dimensional Lie algebras with dimL1=1 % n=6 array lienstrucin(6,6,6)$ lienstrucin(1,2,2):=lienstrucin(1,2,6):=lienstrucin(1,5,2):=-1$ lienstrucin(1,5,6):=lienstrucin(2,5,3):=lienstrucin(2,5,5):=-1$ lienstrucin(1,2,3):=lienstrucin(1,2,5):=lienstrucin(1,5,3):=1$ lienstrucin(1,5,5):=lienstrucin(2,5,2):=lienstrucin(2,5,6):=1$ liendimcom1(6); {lie_algebra(2),commutative(4)} % transformation matrix lientrans; [0 -1 1 0 1 -1] [ ] [0 1 0 0 0 0 ] [ ] [1 1 -1 0 -1 1 ] [ ] [0 0 0 1 0 0 ] [ ] [0 0 -1 0 0 1 ] [ ] [0 0 0 0 0 1 ] clear lienstrucin$ % n=8 array lienstrucin(8,8,8)$ lienstrucin(1,2,2):=lienstrucin(1,5,2):=lienstrucin(2,4,3):=1$ lienstrucin(2,4,5):=lienstrucin(4,5,2):=1$ lienstrucin(1,2,3):=lienstrucin(1,2,5):=lienstrucin(1,5,3):=-1$ lienstrucin(1,5,5):=lienstrucin(2,4,2):=lienstrucin(4,5,3):=-1$ lienstrucin(4,5,5):=-1$ lienstrucin(1,2,6):=lienstrucin(1,5,6):=lienstrucin(4,5,6):=5$ lienstrucin(2,4,6):=-5$ liendimcom1(8); {heisenberg(3),commutative(5)} % same with verbose output on tr_lie$ liendimcom1(8); Your Lie algebra is the direct sum of the Lie algebra H(3) and the 5-dimensional commutative Lie algebra, where H(3) is 3-dimensional and there exists a basis {X(1),...,X(3)} in H(3) with: [X(2),X(3)]=[X(2*i),X(2*i+1)]=...=[X(2),X(3)]=X(1) The transformation into this form is: X(1):=5*y(6) - y(5) - y(3) + y(2) X(2):=y(1) X(3):=y(2) X(4):=y(4) - y(1) X(5):=y(5) - y(2) X(6):=y(6) X(7):=y(7) X(8):=y(8) {heisenberg(3),commutative(5)} clear lienstrucin$ off tr_lie$ % 2. 4-dimensional Lie algebras % Korteweg-de Vries Equation: u_t+u_{xxx}+uu_x=0 % symmetry algebra spanned by four vector fields: % v_1=d_x, v_2=d_t, v_3=td_x+d_u, v_4=xd_x+3td_t-2ud_u array liestrin(4,4,4)$ liestrin(1,4,1):=liestrin(2,3,1):=1$ liestrin(2,4,2):=3$ liestrin(3,4,3):=-2$ lieclass(4); {liealg(4),comtab(16),5} clear liestrin$ % dimL1=3, dimL2=3 array liestrin(4,4,4)$ liestrin(1,2,1):=-6$ liestrin(1,2,3):=-2$ liestrin(1,2,4):=6$ liestrin(1,3,1):=-1$ liestrin(1,3,2):=1$ liestrin(1,3,4):=1$ liestrin(2,3,1):=-3$ liestrin(2,3,4):=2$ liestrin(2,4,1):=6$ liestrin(2,4,3):=2$ liestrin(2,4,4):=-6$ liestrin(3,4,1):=1$ liestrin(3,4,2):=-1$ liestrin(3,4,4):=-1$ lieclass(4); {liealg(4),comtab(21)} % same with verbose output on tr_lie$ lieclass(4); [W,X]=Y, [W,Y]=-X, [X,Y]=W {liealg(4),comtab(21)} % transformation matrix liemat; [ 3 0 1 -3 ] [ ] [ - 3 2 ] [--------- 0 0 ---------] [ sqrt(2) sqrt(2) ] [ ] [ - 1 1 1 ] [--------- --------- 0 ---------] [ sqrt(2) sqrt(2) sqrt(2) ] [ ] [ -2 0 0 2 ] clear liestrin$ off tr_lie$ end$ Time for test: 280 ms