Artifact 673548236a36e0bc8cc2eb8c78ae57dc8f70201fd4caee9e2adae7f28402c3da:
- Executable file
r37/packages/specfn/ghyper.red
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 24230) [annotate] [blame] [check-ins using] [more...]
module ghyper; % Generalized Hypergeometric Functions. % Author : Victor Adamchik, Byelorussian University Minsk, Byelorussia. % Major modifications by: Winfried Neun, ZIB Berlin. put('GHF,'simpfn,'simpGHF)$ symbolic procedure simpGHF u; if null cddr u then rerror('specialf,125, "***** WRONG NUMBER OF ARGUMENTS TO GHF-FUNCTION") else if or(not numberp car u,not numberp cadr u) then rerror('specialf,126,"***** INVALID AS INTEGER") else begin scalar vv,v; v:=redpar1(cddr u,car u); vv:=redpar1(cdr v,cadr u); if null cddr vv then return GHFsq(list(car u,cadr u),listsq car v, listsq car vv, simp cadr vv); return rerror ('specialf,127, "***** WRONG NUMBER OF ARGUMENTS TO GHF-FUNCTION"); end$ symbolic procedure GHFexit(a,b,z); begin scalar aa,bb; aa:= 'list . listprepsq a; bb:= 'list . listprepsq b; return mksqnew('hypergeometric . append(list(aa,bb),list(prepsq z)))$ end; %*********************************************************************** %* GHF as a polynomial * %*********************************************************************** symbolic procedure listmaxsq u; % u - list of numbers of SQ. % return - max value. if null cdr u then car u else if null caar u then car u else if null caadr u then cadr u else if greaterp(caar u,caadr u) or equal(car u,cadr u) then listmaxsq((car u) . cddr u) else listmaxsq((cadr u) . cddr u)$ symbolic procedure GHFpolynomp (u,a); begin scalar w1,w2; M1: if null u then if null w1 then <<u:=w2; return (NIL . a) >> else <<u:=listmaxsq(w1); a:=u . append(delete(u,w1),w2); return (T . a)>> else if parfool(car u) then (w1:=(car u) . w1) else (w2:=(car u) . w2); u:=cdr u; GOTO M1; end$ symbolic procedure polynom(u,a,b,z); % u - list of SQ. begin scalar s; integer k; if null caar(u) then return '(1 . 1) else s := GHFpolynomp (b,a); a := cdr s; if car s then if null caar a or greaterp(caar a,caar u) then <<rerror('special,124, "***** zero in the denominator of the GHF-function"); b:=a; a:=u; return GHFexit(a,b,z); >> else b:=a; k:=1; s:=1 . 1; M: s:=addsq(s,quotsq(multsq(multpochh(u,simp k),exptsq(z,k)), multpochh(append(list('(1 . 1)),b),simp k))); k:=k+1; if greaterp(k,car negsq(car u)) then return s else goto m; end$ %*********************************************************************** %* Lowering of the order GHF * %*********************************************************************** symbolic smacro procedure GHFlowering1p; begin scalar sa,sb,w1,w2; sa:=a; sb:=b; M1: if null b then << a:=sa; b:=sb; return NIL >>; M2: if null a then << w2:= (car b) . w2; b:=cdr b; a:=sa; w1:=nil; GOTO M1 >> else if numberp(prepsq diff1sq(car a,car b)) and greaterp(car(diff1sq(car a,car b)),0) then << b:=car b . append(w2,cdr b); a:=diff1sq(car a,car b) . append(w1,cdr a); return T >> else << w1:=(car a) . w1; a:=cdr a; GOTO M2 >>; end$ symbolic procedure lowering1(x,y,u,z); % x -- (m . a). % y -- (g . b). addsq(GHFsq(u,append(list(diff1sq(addsq(car x,car y),'(1 . 1))), cdr x), append(list(car y),cdr y),z), multsq(GHFsq(u,append(list(addsq(car x,car y)),listplus(cdr x, '(1 . 1))), append(list(addsq(car y,'(1 . 1))), listplus(cdr y,'(1 . 1))),z), quotsq(multsq(z,multlist(cdr x)), multsq(car y,multlist(cdr y)))))$ symbolic smacro procedure GHFlowering2p; begin scalar sa,sb,w1,wa,fl; if equal(z,'(1 . 1)) then return NIL; sa:=a; sb:=b; M1: if null b then << b:=sb; if fl then a:=wa . sa else a:= sa; return NIL >>; M2: if null a then << b:=cdr b; a:=sa; w1:=nil; GOTO M1 >> else if numberp(prepsq diff1sq(car b,car a)) and lessp(car(diff1sq(car a,car b)),0) then if fl then if not equal(wa,car a) then << b:=sb; a:=list(wa,car a) . append(w1,cdr a); return T >> else << w1:=(car a) . w1; a:=cdr a; GOTO M2 >> else << fl:=T; sa:=append(w1,cdr a); wa:=car a; b:=cdr b; a:=sa; w1:=nil; GOTO M1 >> else << w1:= (car a) .w1; a:=cdr a; GOTO M2 >>; end$ symbolic procedure lowering2(x,b,u,z); % x -- (r s).(a). diff1sq(multsq(GHFsq(u,append(list(caar x,addsq('(1 . 1),cadar x)), cdr x),b,z), quotsq(cadar x,diff1sq(cadar x,caar x))), multsq(GHFsq(u,append(list(addsq('(1 . 1),caar x),cadar x), cdr x),b,z), quotsq(caar x,diff1sq(cadar x,caar x))))$ symbolic smacro procedure GHFlowering3p; %return a = (mmm . a1). begin scalar sa,w,mmm; % MM used in SPDE as a global. sa:=a; M1: if null a then << a:=sa; return NIL >> else if not numberp(prepsq car a) then <<w:= (car a) . w; a:=cdr a; GOTO M1 >>; if member ('(1 . 1), a) then <<mmm := '(1 . 1); a:= delete('(1 . 1),a)>> else << mmm:= car a; a:=cdr a >>; % WN 2.2 94 M2: if null a then if listnumberp b then << a:=mmm . w; return T >> else << a:=sa; return NIL>> else if equal(car a,'(1 . 1)) then <<a:=sa; return NIL>> else <<w:=(car a) . w; a:=cdr a; GOTO M2 >>; end$ symbolic procedure listnumberp(v); % v -- list of SQ. % value is T if numberp exist in (v). if null v then NIL else if numberp(prepsq car v) then T else listnumberp(cdr v)$ symbolic procedure lowering3(a,b,u,z); multsq(quotsq(multlist(difflist(b,'(1 . 1))),multsq(z,multlist( difflist(cdr a,'(1 . 1))))), diff1sq(GHFsq(u, (car a) . difflist(cdr a,'(1 . 1)), difflist(b,'(1 . 1)),z), GHFsq(u,append(list(diff1sq(car a,'(1 . 1))), difflist(cdr a,'(1 . 1))),difflist(b,'(1 . 1)),z)))$ %*********************************************************************** %* GHFsq, main entry * %*********************************************************************** symbolic procedure GHFsq(u,a,b,z); % u -- (p q) PF. % a,b -- lists of SQ. % z -- SQ. begin scalar c,aaa; u:=redpar(a,b); a:=car u;b:=cadr u;u:=list(length(a), length(b)); if null car(z) then return '(1 . 1) else if listparfool(b,(nil .1)) and not listparfool(a,(nil . 1)) then return rerror('specialf,128, "***** zero in the denominator of the GHF-function") else aaa := GHFpolynomp(a,a); a := cdr aaa; if car aaa then return polynom(a,a,b,z) else if GHFlowering1p() then return lowering1(a,b,u,z) else if GHFlowering2p() then return lowering2(a,b,u,z) else if GHFlowering3p() then return lowering3(a,b,u,z) else if car u = 0 and cadr u = 0 then return expdeg(simp 'e,z) else if car u = 0 and cadr u = 1 then return GHF01(a,b,z) else if car u = 1 and cadr u = 0 then if z='(1 . 1) then return GHFexit(a,b,z) else return expdeg(diff1sq('(1 . 1),z),if null a then '(nil . 1) else negsq(car a)) else if car u = 1 and cadr u = 1 then return GHF11(a,b,z) else if car u = 1 and cadr u = 2 then return GHF12(a,b,z) else if car u = 2 and cadr u = 1 then return GHF21(a,b,z) else if car u = cadr u + 1 then if (c:=GHFmid(a,b,z)) = 'FAIL then return GHFexit(a,b,z) else return c; if car u <= cadr u then return GHFexit(a,b,z); return rerror('specialf,131,"hypergeometric series diverges"); end$ %*********************************************************************** % p = q+1 * %*********************************************************************** symbolic procedure GHFmid(a,b,z); begin scalar c; c:= redpar(a,difflist(b, '(1 . 1))); if length(cadr c) > 0 or length(car c) > 1 then return 'FAIL else return formulaformidcase(length(b), caar c, diff1sq(car b,'(1 . 1)), z); end$ symbolic procedure formulaformidcase(p,b,a,z); if not(p = 1) and b = '(1 . 1) and z = '(1 . 1) then multsq(simpx1(prepsq(multsq('(-1 . 1),a)),p,1), quotsq(dfpsisq(a,simp(p-1)),gamsq(simp p))) else if b = '(1 . 1) and z='(-1 . 1) then quotsq(multsq(simpx1(prepsq(multsq('(-1 . 2),a)),p,1), diff1sq(dfpsisq(multsq(a, '(1 . 2)),simp(p-1)), dfpsisq(multsq(addsq('(1 . 1),a),'(1 . 2)), simp(p-1)))), gamsq(simp p)) else if z = '(1 . 1) and not numberp(prepsq b) then multsq( subsqnew( derivativesq( quotsq(gamsq(simp 'r),gamsq(addsq(simp 'r,diff1sq('(1 . 1),b)))), 'r,simp(p-1)), a,'r), quotsq( multsq(multsq(simpx1(prepsq(multsq('(-1 . 1),a)),p,1), '(-1 . 1)), gamsq(diff1sq('(1 . 1),b))), gamsq(simp p))) else if z='(-1 . 1) and numberp prepsq(b) then begin scalar c; integer k; return multsq( subsqnew( derivativesq( addsq( << k:=prepsq(b) - 1; c:='(nil . 1); while prepsq(k)>0 do << c:=addsq(c, multsq(gamsq(b), simppochh(diff1sq(simp(1+k),simp 'r), simp(prepsq(b)-1-k)))); k:=k-1 >>; c >>, quotsq( multsq(gamsq(diff1sq(b,simp 'r)), diff1sq(psisq(multsq(addsq(simp 'r,'(1 . 1)),'(1 . 2))), psisq(multsq(simp 'r,'(1 . 2))))), multsq((2 . 1), gamsq(diff1sq('(1 . 1),simp 'r))))), 'r,p-1), a, 'r), quotsq( multsq(simpx1(prepsq(multsq('(-1 . 1),a)),p,1), '(-1 . 1)), multsq(gamsq(simp p),gamsq(simp b)))) end else 'FAIL$ %*********************************************************************** %* Particular cases * %*********************************************************************** symbolic procedure GHF01(a,b,z); if znak z then multsq(gamsq(car b),multsq(bessmsq(diff1sq(car b,'(1 . 1)), multsq('(2 . 1),simpx1(prepsq z,1,2))), expdeg(z,quotsq(diff1sq('(1 . 1),car b),'(2 . 1))))) else multsq(gamsq(car b),multsq(besssq(diff1sq(car b,'(1 . 1)), multsq('(2 . 1),simpx1(prepsq(negsq z),1,2))),expdeg(negsq z, quotsq(diff1sq('(1 . 1),car b),'(2 . 1))))) $ symbolic procedure GHF11(a,b,z); if equal(car b,multsq('(2 . 1),car a)) then multsq(multsq(gamsq(addsq('(1 . 2),car a)),expdeg(simp 'e, multsq(z,'(1 . 2)))), multsq(expdeg(multsq(z,'(1 . 4)),diff1sq('(1 . 2),car a)), bessmsq(diff1sq(car a,'(1 . 2)),multsq(z,'(1 . 2))))) else if equal(car a,'(1 . 2)) and equal(car b,'(3 . 2)) then multsq(quotsq(simpx1('pi,1,2),'(2 . 1)), if znak z then quotsq(simpfunc('erfi,simpx1(prepsq z,1,2)),simpx1(prepsq z,1,2)) else quotsq(simpfunc('erf,simpx1(prepsq(negsq z),1,2)), simpx1(prepsq(negsq z),1,2))) else if equal(car a,'(1 . 1)) and equal(car b,'(3 . 2)) and znak z then multsq(multsq('(1 . 2),expdeg(simp 'e,z)), multsq(simpfunc('erf,simpx1(prepsq z,1,2)),simpx1(prepsq quotsq(simp('pi),z),1,2))) else GHFexit(a,b,z)$ symbolic procedure GHF21(a,b,z); if and(equal(car a,'(1 . 2)),equal(cadr a,'(1 . 2)), equal(car b,'(3 . 2)),znak(z)) then quotsq(simpfunc('asin,simpx1(prepsq(z),1,2)), simpx1(prepsq(z),1,2)) else if ((equal(car a,'(1 . 2)) and equal(cadr a,'(1 . 1))) or (equal(car a,'(1 . 1)) and equal(cadr a,'(1 . 2)))) and equal(car b,'(3 . 2)) then << if not znak(z) then quotsq(simpfunc('atan,simpx1(prepsq(negsq z),1,2)), simpx1(prepsq(negsq z),1,2)) else % if not equal(z,'(1 . 1)) then % quotsq(simpfunc('log,addsq('(1 . 1),simpx1(prepsq z,1,2))), % multsq(simpfunc('log,diff1sq('(1 . 1),simpx1(prepsq z,1,2))), % multsq('(2 . 1),simpx1(prepsq z,1,2)))) else if not equal(z,'(1 . 1)) then multsq(simpfunc('log,quotsq(addsq('(1 . 1),simpx1(prepsq z,1,2)), diff1sq('(1 . 1),simpx1(prepsq z,1,2)))), invsq(multsq('(2 . 1),simpx1(prepsq z,1,2)))) else GHFexit(a,b,z) >> else if and(equal(car a,'(1 . 1)),equal(cadr a,'(1 . 1)), equal(car b,'(2 . 1)),not equal(z,'(1 . 1))) then quotsq(simpfunc('log,addsq('(1 . 1),negsq z)),negsq z) else if equal(diff1sq(addsq(car a,cadr a),car b),'(-1 . 2)) and (equal(multsq('(2 . 1),car a),car b) or equal(multsq('(2 . 1),cadr a),car b)) then multsq(expdeg(addsq('(1 . 1), simpx1(prepsq(diff1sq('(1 . 1),z)),1,2)), diff1sq('(1 . 1),car b)),expdeg('(2 . 1),addsq(car b,'(-1 . 1)))) else if z='(1 . 1) and (not numberp prepsq diff1sq(car b,addsq(car a, cadr a)) or prepsq(diff1sq(car b,addsq(car a, cadr a))) > 0 ) then quotsq(multsq(gamsq(car b), gamsq(diff1sq(car b,addsq(car a,cadr a))) ), multsq(gamsq(diff1sq(car b,car a)), gamsq(diff1sq(car b,cadr a)))) else if car a='(1 . 1) and cadr a='(1 . 1) and numberp prepsq car b and prepsq car(b) > 0 and not(z='(1 . 1)) then formula136(prepsq car b,z) else GHFexit(a,b,z)$ symbolic procedure formula136(m,z); begin scalar c; integer k; c:='(nil . 1); k:=2; while k<=m-1 do << c:=addsq(c,quotsq(exptsq(diff1sq(z,'(1 . 1)),k), multsq(exptsq(z,k),simp(m-k)))); k:=k+1 >>; c:=diff1sq(c,multsq(exptsq(quotsq(diff1sq(z,'(1 . 1)),z),m), simpfunc('log,diff1sq('(1 . 1),z)))); return multsq(c, quotsq(multsq(simp(m-1),z),exptsq(diff1sq(z,'(1 . 1)),2))); end$ symbolic procedure GHF12(a,b,z); if equal(car a,'(3 . 4)) and (equal(car b,'(3 . 2)) and equal(cadr b, '(7 . 4)) or equal(car b,'(7 . 4)) and equal(cadr b,'(3 . 2))) and not znak z then <<z:=multsq('(2 . 1),simpx1(prepsq(negsq z),1,2)); multsq(quotsq(multsq('(3 . 1),simpx1('pi,1,2)), multsq(simpx1(2,1,2),simpx1(prepsq z,3,2))), simpfunc('intfs,z)) >> else if equal(car a,'(1 . 4)) and (equal(car b,'(1 . 2)) and equal(cadr b, '(5 . 4)) or equal(car b,'(5 . 4)) and equal(cadr b,'(1 . 2))) and not znak z then <<z:=multsq((2 . 1),simpx1(prepsq(negsq z),1,2)); multsq(quotsq(simpx1('pi,1,2),multsq(simpx1(2,1,2), simpx1(prepsq z,1,2))),simpfunc('intfc,z)) >> else GHFexit(a,b,z)$ symbolic smacro procedure fehler(); rerror('specialf,139,"Wrong arguments to hypergeometric"); symbolic procedure hypergeom(U); begin scalar list1,list2,res,res1; if not (length(u) = 3) then fehler(); if pairp u then list1 :=car u else fehler(); if pairp cdr u then list2 := cadr u else fehler(); if not pairp cddr u then fehler(); if not eqcar(list1,'list) then fehler(); if not eqcar(list2,'list) then fehler(); list1 := for each x in cdr list1 collect simp reval x; list2 := for each x in cdr list2 collect simp reval x; res := ghfsq(list (length list1,length list2), list1,list2,simp caddr u); res1 := prepsq res; return if eqcar(res1,'hypergeometric) then res else simp res1; end; put('hypergeometric,'simpfn,'hypergeom); % something is missing: algebraic let {hypergeometric({1/2,1/2},{3/2},-(~x)^2) => asinh(x)/x }; algebraic let hypergeometric({~a,~b},{~c},-(~z/(1-~z))) => hypergeometric({a,c-b},{c},z) * (1-z)^a; % Pfaff's reflection law flag ('(permutationof),'boolean); symbolic procedure permutationof(set1,set2); length set1 = length set2 and not setdiff(set1,set2); algebraic let { hypergeometric({},~lowerind,~z) => 3/(32*sqrt(2)*(-z)^(3/4))* (cosh(2*(-z*4)^(1/4))*sin(2*(-z*4)^(1/4)) - sinh(2*(-z*4)^(1/4))*cos(2*(-z*4)^(1/4))) when permutationof(lowerind,{5/4,3/2,7/4}) and numberp z and z < 0, hypergeometric({},~lowerind,~z) => 1/(4*(-4*z)^(1/4))* (sinh(2*(-z*4)^(1/4))*cos(2*(-z*4)^(1/4)) + cosh(2*(-z*4)^(1/4))*sin(2*(-z*4)^(1/4))) when permutationof(lowerind,{5/4,1/2,3/4}) and numberp z and z < 0, hypergeometric({},~lowerind,~z) => 1/(8*(-z)^(1/2))*sinh(2*(-z*4)^(1/4))*sin(2*(-z*4)^(1/4)) when permutationof(lowerind,{3/4,5/4,3/2}) and numberp z and z < 0, hypergeometric({},~lowerind,~z) => cosh(2*(-z*4)^(1/4))*cos(2*(-z*4)^(1/4)) when permutationof(lowerind,{1/4,1/2,3/4}) and numberp z and z < 0, hypergeometric({},~lowerind,~z) => 3/(64*z^(3/4))*(sinh(4*z^(1/4)) -sin(4*z^(1/4))) when permutationof(lowerind,{5/4,3/2,7/4}), hypergeometric({},~lowerind,~z) => 1/(8*z^(1/4))*(sinh(4*z^(1/4)) +sin(4*z^(1/4))) when permutationof(lowerind,{5/4,1/2,3/4}), hypergeometric({},~lowerind,~z) => 1/(16*z^(1/2))*(cosh(4*z^(1/4)) -cos(4*z^(1/4))) when permutationof(lowerind,{3/4,5/4,3/2}), hypergeometric({},~lowerind,~z) => 1/2*(cosh(4*z^(1/4)) + cos(4*z^(1/4))) when permutationof(lowerind,{1/4,1/2,3/4}) }; algebraic << hypergeometric_rules:= { hypergeometric({~a},{},~x) => (1-x)^(-a) when not(numberp x and x=1), % F(a;b;z) hypergeometric({1/2},{5/2},~x) => 3/(4*x)*((1+2*x)/2*sqrt(pi/x)*erfi(sqrt(x))-e^x), hypergeometric({1},{1/2},~x) => 1+sqrt(pi*x)*e^x*erf(sqrt(x)), hypergeometric({1},{3/2},~x) => 1/2*sqrt(pi/x)*e^x*erf(sqrt(x)), hypergeometric({1},{5/2},~x) => 3/(2*x)*(1/2*sqrt(pi/x)*e^(x)*erf(sqrt(x))-1), hypergeometric({1},{7/2},~x) => 5/(4*x^2)*(3/2*sqrt(pi/x)*e^x*erf(sqrt(x))-3-2*x), hypergeometric({3/2},{5/2},-~x) => e^(-x)*hypergeometric({1},{5/2},x), hypergeometric({3/2},{5/2},~x) => 3/(2*x)*(e^x-1/2*sqrt(pi/x)*erfi(sqrt(x))), hypergeometric({5/2},{7/2},-~x) => e^(-x)*hypergeometric({1},{7/2},x), hypergeometric({7/2},{9/2},-~x) => e^(-x)*hypergeometric({1},{9/2},x), hypergeometric({~a},{~b},~x) => a*(-x)^(-a)*m_gamma(a,-x) when b = a + 1, hypergeometric({~a},{~b},~x) => (a+1)*(e^(x)+(-x-a)*(-x)^(-a-1)*m_gamma(a+1,-x)) when b = a + 2, % F(a,b;c;z) hypergeometric({-1/2,1},{3/2},-~x) => (1/2)*(1+(1+x)*(atan(sqrt(x))/sqrt(x))), hypergeometric({-1/2,1},{3/2},~x) => (1/2)*(1+(1-x)*(atanh(sqrt(x))/sqrt(x))), hypergeometric({1/2,1},{5/2},-~x) => (3/2*-x)*(1-(1+x)*(atan(sqrt(x))/sqrt(x))), hypergeometric({1/2,1},{5/2},~x) => (3/2*x)*(1-(1-x)*(atanh(sqrt(x))/sqrt(x))), hypergeometric({~a + 1/2,~a},{1/2},~x) => (1-x)^(-a)*cos(2*a*atan(sqrt(-x))), hypergeometric({5/4,3/4},{1/2},~x) => (1-x)^(-3/4)*cos(3/2*atan(sqrt(-x))), hypergeometric({(~n+1)/2 + 1/2,(~n+1)/2},{1/2},~x) => (1-x)^(-(n+1)/2)*cos((n+1)*atan(sqrt(-x))), hypergeometric({7/4,5/4},{3/2},~x) => 2/3*(1-x)^(-3/4)/sqrt(-x)*sin(3/2*atan(sqrt(-x))), hypergeometric({~a + 1/2,~a},{3/2},~x) => ((1-x)^(1/2-a))/((2*a-1)*sqrt(-x))*sin((2*a-1)*atan(sqrt(-x))), hypergeometric({(~n+2)/2 + 1/2,(~n+2)/2},{3/2},~x) => ((1-x)^(1/2-(n+2)/2))/((2*(n+2)/2-1)*sqrt(-x))*sin((2*(n+2)/2-1) *atan(sqrt(-x))), % F(a;b,c;z); hypergeometric({-1/2},{1/2,1/2},-~x) => cos(2*sqrt(x))+2*sqrt(x)*si(2*sqrt(x)), hypergeometric({-1/2},{1/2,1/2},~x) => cosh(2*sqrt(x))-2*x*shi(2*sqrt(x)), hypergeometric({-1/2},{1/2,3/2},-~x) => (1/2)*(cos(2*sqrt(x))+(sin(2*sqrt(x)))/(2*sqrt(x)) +2*sqrt(x)*si(2*sqrt(x))), hypergeometric({-1/2},{1/2,3/2},~x) => (1/2)*(cosh(2*sqrt(x))+(sinh(2*sqrt(x)))/(2*sqrt(x)) -2*sqrt(x)*shi(2*sqrt(x))), hypergeometric({-1/2},{3/2,3/2},-~x) => (1/4)*(cos(2*sqrt(x))+(sin(2*sqrt(x)))/(2*sqrt(x)) +(1+2*x)*(si(2*sqrt(x)))/sqrt(x)), hypergeometric({-1/2},{3/2,3/2},~x) => (1/4)*(cosh(2*sqrt(x)) +(sinh(2*sqrt(x)))/(2*sqrt(x)) +(1-2*x)*(shi(2*sqrt(x)))/sqrt(x)), hypergeometric({1/2},{3/2,3/2},-~x) => si(2*sqrt(x))/(2*sqrt(x)), hypergeometric({1/2},{3/2,3/2},~x) => shi(2*sqrt(x))/(2*sqrt(x)), hypergeometric({1/2},{5/2,3/2},-~x) => 3/(8*-x)*(2*sqrt(x)*si(2*sqrt(x))-cos(2*sqrt(x))+ (sin(2*sqrt(x)))/(2*sqrt(x))), hypergeometric({1/2},{5/2,3/2},~x) => 3/(8*x)*(2*sqrt(x)*shi(2*sqrt(x))-cosh(2*sqrt(x))+ (sinh(2*sqrt(x)))/(2*sqrt(x))), hypergeometric({1},{3/4,5/4},~x) => 1/2*sqrt(pi/sqrt(-x))*(cos(2*sqrt(-x))*fresnel_c(2*sqrt(-x)) + sin(2*sqrt(-x))*fresnel_s(2*sqrt(-x))), hypergeometric({1},{5/4,7/4},~x) => 3*sqrt(pi)/(8*(sqrt(-x))^(3/2))*(sin(2*sqrt(-x)) *fresnel_c(2*sqrt(-x))-cos(2*sqrt(-x))*fresnel_s(2*sqrt(-x))), hypergeometric({5/2},{7/2,7/2},-~x) => (75/(16*x^2))*(3*si(2*sqrt(x))/(2*sqrt(x)) - 2*sin(2*sqrt(x))/sqrt(x) + cos(2*sqrt(x))), hypergeometric({5/2},{7/2,7/2},~x) => (75/(16*x^2))*(3*shi(2*sqrt(x))/(2*sqrt(x)) - 2*sinh(2*sqrt(x))/sqrt(x) + cosh(2*sqrt(x))), hypergeometric({~a},{~b,3/2},~x) => -2^(1-2*a)*a*(sqrt(-x))^(-2*a)* (gamma(2*a-1)*cos(a*pi)+fresnel_s(2*sqrt(-x),2*a-1)) when b = a + 1, hypergeometric({~a},{~b,1/2},~x) => 2^(1-2*a)*a*(sqrt(-x))^(-2*a)* (gamma(2*a)*cos(a*pi)-fresnel_c(2*sqrt(-x),2*a)) when b = a + 1 }; let hypergeometric_rules; operator Poisson!-Charlier, Toronto; let { Toronto(~m,~n,~x) => Gamma(m/2 + 1/2)/factorial n * x^(2*n-2*m+1)*exp(-x^2) * KummerM(m/2+1/2,1+n,x^2), Poisson!-Charlier(~n,~nu,~x) => pochhammer(1 + nu-n,n)/(sqrt factorial n * x^(n/2))* sum(pochhammer(-n,i)*x^i/ (pochhammer(1+nu-n,i) * factorial i) ,i,0,n) }; >>; endmodule; end;