Artifact 61b85a477ccb72642d4c4208d450918dd0b17525e0baada9e99f217c7d539e72:
- Executable file
r37/packages/xideal/xideal.tst
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 3027) [annotate] [blame] [check-ins using] [more...]
- Executable file
r38/packages/xideal/xideal.tst
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 3027) [annotate] [blame] [check-ins using]
% Test file for XIDEAL package (Groebner bases for exterior algebra) % Declare EXCALC variables pform {x,y,z,t}=0,f(i)=1,{u,u(i),u(i,j)}=0; % Reductions with xmodideal (all should be zero) d x^d y xmodideal {d x - d y}; d x^d y^d z xmodideal {d x^d y - d z^d t}; d x^d z^d t xmodideal {d x^d y - d z^d t}; f(2)^d x^d y xmodideal {d t^f(1) - f(2)^f(3), f(3)^f(1) - d x^d y}; d t^f(1)^d z xmodideal {d t^f(1) - f(2)^f(3), f(1)^d z - d x^d y, d t^d y - d x^f(2)}; f(3)^f(4)^f(5)^f(6) xmodideal {f(1)^f(2) + f(3)^f(4) + f(5)^f(6)}; f(1)^f(4)^f(5)^f(6) xmodideal {f(1)^f(2) + f(2)^f(3) + f(3)^f(4) + f(4)^f(5) + f(5)^f(6)}; d x^d y^d z xmodideal {x**2+y**2+z**2-1,x*d x+y*d y+z*d z}; % Changing the division between exterior variables and parameters xideal {a*d x+y*d y}; xvars {a}; xideal {a*d x+y*d y}; xideal({a*d x+y*d y},{a,y}); xvars {}; % all 0-forms are coefficients excoeffs(d u - (a*p - q)*d y); exvars(d u - (a*p - q)*d y); xvars {p,q}; % p,q are no longer coefficients excoeffs(d u - (a*p - q)*d y); exvars(d u - (a*p - q)*d y); xvars nil; % Exterior system for heat equation on 1st jet bundle S := {d u - u(-t)*d t - u(-x)*d x, d u(-t)^d t + d u(-x)^d x, d u(-x)^d t - u(-t)*d x^d t}; % Check that it's closed. dS := d S xmodideal S; % Exterior system for a Monge-Ampere equation korder d u(-y,-y),d u(-x,-y),d u(-x,-x),d u(-y),d u(-x),d u; M := {u(-x,-x)*u(-y,-y) - u(-x,-y)**2, d u - u(-x)*d x - u(-y)*d y, d u(-x) - u(-x,-x)*d x - u(-x,-y)*d y, d u(-y) - u(-x,-y)*d x - u(-y,-y)*d y}$ % Get the full Groebner basis gbdeg := xideal M; % Changing the term ordering can be dramatic xorder gradlex; gbgrad := xideal M; % But the bases are equivalent gbdeg xmod gbgrad; xorder deglex; gbgrad xmod gbdeg; % Some Groebner bases gb := xideal {f(1)^f(2) + f(3)^f(4)}; gb := xideal {f(1)^f(2), f(1)^f(3)+f(2)^f(4)+f(5)^f(6)}; % Non-graded ideals % Left and right ideals are not the same d t^(d z+d x^d y) xmodideal {d z+d x^d y}; (d z+d x^d y)^d t xmodideal {d z+d x^d y}; % Higher order forms can now reduce lower order ones d x xmodideal {d y^d z + d x,d x^d y + d z}; % Anything whose even part is a parameter generates the trivial ideal!! gb := xideal({x + d y},{}); gb := xideal {1 + f(1) + f(1)^f(2) + f(2)^f(3)^f(4) + f(3)^f(4)^f(5)^f(6)}; xvars nil; % Tracing Groebner basis calculations on trxideal; gb := xideal {x-y+y*d x-x*d y}; off trxideal; % Same thing in lexicographic order, without full reduction xorder lex; off xfullreduce; gblex := xideal {x-y+y*d x-x*d y}; % Manual autoreduction gblex := xauto gblex; % Tracing reduction on trxmod; first gb xmod gblex; % Restore defaults on xfullreduce; off trxideal,trxmod; xvars nil; xorder deglex; end;