Artifact 600c717e27d065107901777cfee948efe6fab2a4aac10072d08d09442ff90ab9:
- File
r34.1/src/orthovec.red
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 16936) [annotate] [blame] [check-ins using] [more...]
- File
r34.3/src/orthovec.red
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 16936) [annotate] [blame] [check-ins using]
- File
r35/src/orthovec.red
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 16936) [annotate] [blame] [check-ins using]
module orthovec; % 3-D vector calculus package. create!-package('(orthovec),'(contrib avector)); % %========================================% % % ORTHOVEC % % %========================================% % % A 3-D VECTOR CALCULUS PACKAGE % % % USING ORTHOGONAL CURVILINEAR % % % COORDINATES % % % % % % copyright James W Eastwood, % % % Culham Laboratory, % % % Abingdon, Oxon. % % % % % % February 1987 % % % % % % This new version differs from the % % % original version published in CPC, % % % 47(1987)139-147 in the following % % % respects: % % % % % % *.+.,etc replaced by +,-,*,/ % % % *unary vector +,-,/ introduced % % % *vector component selector _ % % % *general tidy up % % % *L'Hopitals rule in Taylor series % % % *extended division definition % % % *algebraic output of lisp vectors % % % *exponentiation of vectors % % % *vector extension of depend % % % % % % Version 2 % % % All rights reserved % % % copyright James W Eastwood % % % June 1990 % % % % % % This is a preliminary version of % % % the NEW VERSION of ORTHOVEC which % % % will be available from the Computer % % % Physics Communications Program % % % Library, Dept. of Applied Maths and % % % Theoretical Physics, The Queen's % % % University of Belfast, Belfast % % % BT7 1NN, Northern Ireland. % % % See any copy of CPC for further % % % details of the library services. % % % % % %========================================% % % REDUCE 3.4 is assumed % % %========================================% % % % %------------------------------------------------------------------- % INITIALISATION %% algebraic; %select coordinate system %======================== procedure vstart; begin scalar ctype; write "Select Coordinate System by number"; write "1] cartesian"; write "2] cylindrical"; write "3] spherical"; write "4] general"; write "5] others"; %remove previous settings clear u1,u2,u3,h1,h2,h3; depend h1,u1,u2,u3; depend h2,u1,u2,u3; depend h3,u1,u2,u3; nodepend h1,u1,u2,u3; nodepend h2,u1,u2,u3; nodepend h3,u1,u2,u3; %select coordinate system ctype := symbolic read(); if ctype=1 then << u1:=x;u2:=y;u3:=z;h1:=1;h2:=1;h3:=1 >> else if ctype=2 then << u1:=r;u2:=th;u3:=z;h1:=1;h2:=r;h3:=1 >> else if ctype=3 then << u1:=r;u2:=th;u3:=ph;h1:=1;h2:=r;h3:=r*sin(th) >> else if ctype=4 then << depend h1,u1,u2,u3;depend h2,u1,u2,u3;depend h3,u1,u2,u3 >> else << write "To define another coordinate system, give values "; write "to components u1,u2,u3 and give functional form or"; write "DEPEND for scale factors h1,h2 and h3. For example,"; write "to set up paraboloidal coords u,v,w type in:-"; write "u1:=u;u2:=v;u3:=w;h1:=sqrt(u**2+v**2);h2:=h1;h3:=u*v;">>; write "coordinate type = ",ctype; write "coordinates = ",u1,",",u2,",",u3; write "scale factors = ",h1,",",h2,",",h3; return end$ let vstart=vstart()$ %give access to lisp vector procedures %======================================= symbolic operator putv,getv,mkvect; flag('(vectorp), 'direct); flag('(vectorp), 'boolean); %------------------------------------------------------------------- % INPUT-OUTPUT % %set a new vector %=================== procedure svec(c1,c2,c3); begin scalar a;a:=mkvect(2); putv(a,0,c1);putv(a,1,c2);putv(a,2,c3); return a end$ %output a vector %=============== procedure vout(v); begin; if vectorp(v) then for j:=0:2 do write "[",j+1,"] ",getv(v,j) else write v; return v end$ %------------------------------------------------------------------- % REDEFINITION OF SOME STANDARD PROCEDURES % % make lisp vectors print in algebraic form % by modifying maprin of the RLISP module symbolic procedure maprin u; %vectors if vectorp(u) then <<prin2!* '[ ; for ic:=0:(upbv(u)-1) do << maprint(getv(u,ic),0); oprin '!*comma!* >>; maprint(getv(u,upbv(u)),0); prin2!* '] >> %otherwise original form of maprin else maprint(u,0)$ %vector extension of standard definitions of depend and nodepend remflag('(depend nodepend),'lose); % We must use these definitions. symbolic procedure depend u; begin scalar v,w; v:= !*a2k car u; for each x in cdr u do if vectorp(v) then for ic:=0:upbv(v) do <<if atom(w:=getv(v,ic)) and not numberp(w) then depend1(w,x,t)>> else depend1(car u,x,t) end$ symbolic procedure nodepend u; begin scalar v,w; rmsubs(); v:= !*a2k car u; for each x in cdr u do if vectorp(v) then for ic:=0:upbv(v) do <<if atom(w:=getv(v,ic)) and not numberp(w) then depend1(w,x,nil)>> else depend1(car u,x,nil) end $ % %------------------------------------------------------------------- % ALGEBRAIC OPERATIONS % %define symbols for vector algebra %===================================== newtok '(( !+ ) vectoradd); newtok '(( !- ) vectordifference); newtok '((!> !< ) vectorcross); newtok '(( !* ) vectortimes); newtok '(( !/ ) vectorquotient); newtok '(( !_ ) vectorcomponent); newtok '(( !^ ) vectorexpt); % %define operators %================ operator vectorminus,vectorplus,vectorrecip; infix vectoradd,vectordifference,vectorcross,vectorexpt, vectorcomponent,vectortimes,vectorquotient,dotgrad; precedence vectoradd,<; precedence vectordifference,vectoradd; precedence dotgrad,vectordifference; precedence vectortimes,dotgrad; precedence vectorcross,vectortimes; precedence vectorquotient,vectorcross; precedence vectorexpt,vectorquotient; precedence vectorcomponent,vectorexpt; deflist( '( (vectordifference vectorminus) (vectoradd vectorplus) (vectorquotient vectorrecip) (vectorrecip vectorrecip) ), 'unary)$ deflist('((vectorminus vectorplus) (vectorrecip vectortimes)), 'alt)$ %extract component of a vector %============================= procedure vectorcomponent(v,ic); if vectorp(v) then if ic=1 or ic=2 or ic=3 then getv(v,ic-1) else rerror(orthovec,1,"Incorrect component number") else rerror(orthovec,2,"Not a vector")$ % %add vector or scalar pair v1 and v2 %=================================== procedure vectoradd(v1,v2); begin scalar v3; if vectorp(v1) and vectorp(v2) then <<v3:=mkvect(2); for ic:=0:2 do putv(v3,ic,plus(getv(v1,ic),getv(v2,ic)))>> else if not(vectorp(v1)) and not(vectorp(v2)) then v3:=plus(v1, v2) else rerror(orthovec,3,"Incorrect args to vector add"); return v3 end$ %unary plus %========== procedure vectorplus(v);v$ % %negate vector or scalar v %========================= procedure vectorminus(v); begin scalar v3; if vectorp(v) then <<v3:=mkvect(2); for ic:=0:2 do putv(v3,ic,minus(getv(v,ic)))>> else v3:=minus(v); return v3 end$ %scalar or vector subtraction %============================ procedure vectordifference(v1,v2);(v1 + vectorminus(v2))$ %dot product or scalar times %=========================== procedure vectortimes(v1,v2); begin scalar v3; if vectorp(v1) and vectorp(v2) then v3:= for ic:=0:2 sum times(getv(v1,ic),getv(v2,ic)) else if not(vectorp(v1)) and not(vectorp(v2)) then v3:=times(v1 , v2 ) else if vectorp(v1) and not(vectorp(v2)) then <<v3:=mkvect(2); for ic:=0:2 do putv(v3,ic,times(getv(v1,ic),v2)) >> else <<v3:=mkvect(2); for ic:=0:2 do putv(v3,ic,times(getv(v2,ic),v1)) >>; return v3 end$ %vector cross product %==================== procedure vectorcross(v1,v2); begin scalar v3; if vectorp(v1) and vectorp(v2) then <<v3:=mkvect(2); putv(v3,0,getv(v1,1)*getv(v2,2)-getv(v1,2)*getv(v2,1)); putv(v3,1,getv(v1,2)*getv(v2,0)-getv(v1,0)*getv(v2,2)); putv(v3,2,getv(v1,0)*getv(v2,1)-getv(v1,1)*getv(v2,0))>> else rerror(orthovec,4,"Incorrect args to vector cross product"); return v3 end$ %vector division %=============== procedure vectorquotient(v1,v2); if vectorp(v1) then if vectorp(v2) then quotient (v1*v2,v2*v2) else v1*recip(v2) else if vectorp(v2) then v1*v2*recip(v2*v2) else quotient(v1,v2)$ procedure vectorrecip(v); if vectorp(v) then v*recip(v*v) else recip(v)$ %length of vector %================ procedure vmod(v);sqrt(v * v)$ %vector exponentiation %===================== procedure vectorexpt(v,n); if vectorp(v) then expt(vmod(v),n) else expt(v,n)$ %------------------------------------------------------------------- % DIFFERENTIAL OPERATIONS % %div %=== procedure div(v); if vectorp(v) then (df(h2*h3*getv(v,0),u1)+df(h3*h1*getv(v,1),u2) +df(h1*h2*getv(v,2),u3))/h1/h2/h3 else rerror(orthovec,5,"Incorrect arguments to div")$ %grad %==== procedure grad(s); begin scalar v; v:=mkvect(2); if vectorp(s) then rerror(orthovec,6,"Incorrect argument to grad") else << putv(v,0,df(s,u1)/h1); putv(v,1,df(s,u2)/h2); putv(v,2,df(s,u3)/h3) >>; return v end$ %curl %==== procedure curl(v); begin scalar v1; v1:=mkvect(2); if vectorp(v) then << putv(v1,0,(df(h3*getv(v,2),u2)-df(h2*getv(v,1),u3))/h2/h3); putv(v1,1,(df(h1*getv(v,0),u3)-df(h3*getv(v,2),u1))/h3/h1); putv(v1,2,(df(h2*getv(v,1),u1)-df(h1*getv(v,0),u2))/h1/h2) >> else rerror(orthovec,7,"Incorrect argument to curl"); return v1 end$ %laplacian %========= procedure delsq(v); if vectorp(v) then (grad(div(v)) - curl(curl(v))) else div(grad(v))$ %differentiation %=============== procedure vdf(v,x); begin scalar v1; if vectorp(x) then rerror(orthovec,8,"Second argument to VDF must be scalar") else if vectorp(v) then <<v1:=mkvect(2);for ic:=0:2 do putv(v1,ic,vdf(getv(v,ic),x)) >> else v1:=df(v,x); return v1 end$ %v1.grad(v2) %=========== procedure dotgrad(v1,v2); if vectorp(v1) then if vectorp(v2) then (1/2)*(grad(v1 * v2) + v1 * div(v2) - div(v1) * v2 - (curl(v1 >< v2) + v1 >< curl(v2) - curl(v1) >< v2 )) else v1 * grad(v2) else rerror(orthovec,9,"Incorrect arguments to dotgrad")$ %3-D Vector Taylor Expansion about vector point %============================================== procedure vtaylor(vex,vx,vpt,vorder); %note: expression vex, variable vx, point vpt and order vorder % are any legal mixture of vectors and scalars begin scalar vseries; if vectorp(vex) then <<vseries:=mkvect(2); for ic:=0:2 do putv(vseries,ic,vptaylor(getv(vex,ic),vx,vpt,vorder))>> else vseries:=vptaylor(vex,vx,vpt,vorder); return vseries end$ %Scalar Taylor expansion about vector point %========================================== procedure vptaylor(sex,vx,vpt,vorder); %vector variable if vectorp(vx) then if vectorp(vpt) then %vector order if vectorp(vorder) then taylor( taylor( taylor( sex, getv(vx,0), getv(vpt,0), getv(vorder,0) ), getv(vx,1), getv(vpt,1), getv(vorder,1) ), getv(vx,2), getv(vpt,2), getv(vorder,2) ) else taylor( taylor( taylor( sex, getv(vx,0), getv(vpt,0), vorder), getv(vx,1), getv(vpt,1), vorder), getv(vx,2), getv(vpt,2), vorder) else rerror(orthovec,10,"VTAYLOR: vector VX mismatches scalar VPT") %scalar variable else if vectorp(vpt) then rerror(orthovec,11,"VTAYLOR: scalar VX mismatches vector VPT") else if vectorp(vorder) then rerror(orthovec,12,"VTAYLOR: scalar VX mismatches vector VORDER") else taylor(sex,vx,vpt,vorder)$ %Scalar Taylor expansion of ex wrt x about point pt to order n %============================================================= procedure taylor(ex,x,pt,n); begin scalar term,series,dx,mfac; if numberp n then << mfac:=1;dx:=x-pt;term:=ex; series:= limit(ex,x,pt) + for k:=1:n sum limit((term:=df(term,x)),x,pt)*(mfac:=mfac*dx/k) >> else rerror(orthovec,13, "Truncation orders of Taylor series must be integers"); return series end$ % %limiting value of exression ex as x tends to pt %=============================================== procedure limit(ex,x,pt); begin scalar lim,denex,numex; %polynomial lim:=if (denex:=den(ex))=1 then sub(x=pt,ex) else %zero denom rational if sub(x=pt,denex)=0 then %l'hopital's rule << if sub(x=pt,(numex:=num(ex)))=0 then limit(df(numex,x)/df(denex,x),x,pt) %singular else rerror(orthovec,14,"Singular coefficient found by LIMIT")>> %nonzero denom rational else sub(x=pt,ex); return lim end$ % %------------------------------------------------------------------- % INTEGRAL OPERATIONS % % Vector Integral %================ procedure vint(v,x); begin scalar v1; if vectorp(x) then rerror(orthovec,15,"Second argument to VINT must be scalar") else if vectorp(v) then <<v1:=mkvect(2);for ic:=0:2 do putv(v1,ic,int(getv(v,ic),x)) >> else v1:=int(v,x); return v1 end$ %Definite Vector Integral %======================== procedure dvint(v,x,xlb,xub); begin scalar integr,intval; if vectorp(xlb) or vectorp(xub) then rerror(orthovec,16,"Limits to DVINT must be scalar") else if vectorp(v) then <<intval:=mkvect(2); for ic:=0:2 do <<integr:=int(getv(v,ic),x); putv(intval,ic,sub(x=xub,integr)-sub(x=xlb,integr)) >> >> else <<integr:=int(v,x);intval:=sub(x=xub,integr)-sub(x=xlb,integr)>>; return intval end$ %Volume Integral %=============== procedure volint(v); begin scalar v1; if vectorp(v) then <<v1:=mkvect(2);for ic:=0:2 do putv(v1,ic,volint(getv(v,ic))) >> else v1:= int( int( int(v*h1*h2*h3,u1),u2),u3); return v1 end$ %Definite Volume Integral %======================== procedure dvolint(v,vlb,vub,n); begin scalar v1,intgrnd; if vectorp(vlb) and vectorp(vub) then <<intgrnd:= (h1*h2*h3) * v; v1:= if n=1 then dvint(dvint(dvint(intgrnd, u1,getv(vlb,0),getv(vub,0)), u2,getv(vlb,1),getv(vub,1)), u3,getv(vlb,2),getv(vub,2) ) else if n=2 then dvint(dvint(dvint(intgrnd, u3,getv(vlb,2),getv(vub,2)), u1,getv(vlb,0),getv(vub,0)), u2,getv(vlb,1),getv(vub,1) ) else if n=3 then dvint(dvint(dvint(intgrnd, u2,getv(vlb,1),getv(vub,1)), u3,getv(vlb,2),getv(vub,2)), u1,getv(vlb,0),getv(vub,0) ) else if n=4 then dvint(dvint(dvint(intgrnd, u1,getv(vlb,0),getv(vub,0)), u3,getv(vlb,2),getv(vub,2)), u2,getv(vlb,1),getv(vub,1) ) else if n=5 then dvint(dvint(dvint(intgrnd, u2,getv(vlb,1),getv(vub,1)), u1,getv(vlb,0),getv(vub,0)), u3,getv(vlb,2),getv(vub,2) ) else dvint(dvint(dvint(intgrnd, u3,getv(vlb,2),getv(vub,2)), u2,getv(vlb,1),getv(vub,1)), u1,getv(vlb,0),getv(vub,0)) >> else rerror(orthovec,17,"Bounds to DVOLINT must be vectors"); return v1 end$ %Scalar Line Integral %==================== procedure lineint(v,vline,tt); if vectorp(v) and vectorp(vline) and not vectorp(tt) then int(sub( u1=getv(vline,0), u2=getv(vline,1), u3=getv(vline,2), getv(v,0) * df(getv(vline,0),tt) * h1 + getv(v,1) * df(getv(vline,1),tt) * h2 + getv(v,2) * df(getv(vline,2),tt) * h3 ) , tt) else rerror(orthovec,18,"Incorrect arguments to LINEINT")$ %Definite Scalar Line Integral %============================= procedure dlineint(v,vline,tt,tlb,tub); begin scalar integr,intval; if vectorp(tlb) or vectorp(tub) then rerror(orthovec,19,"Limits to DLINEINT must be scalar") else <<integr:=lineint(v,vline,tt); intval:=sub(tt=tub,integr)-sub(tt=tlb,integr)>>; return intval end$ % %------------------------------------------------------------------- % SET DEFAULT COORDINATES TO CARTESIAN % % write "Cartesian coordinates selected by default"; % write "If you wish to change this then type VSTART"; % write "and follow the instructions given."; % write "u1,u2,u3 are reserved for coordinate names"; % write "h1,h2,h3 are reserved for scale factor names"; ctype:=1$u1:=x$u2:=y$u3:=z$h1:=1$h2:=1$h3:=1$ % write "coordinate type = ",ctype; % write "coordinates = ",u1,",",u2,",",u3; % write "scale factors = ",h1,",",h2,",",h3; %------------------------------------------------------------------- endmodule; end;