Artifact 553d1a21d57f5ec6d787d4f8f7e9a9a26f257eda3c584ef23fac4188cbd1dfa4:
- Executable file
r37/patches/patches.tst
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 5624) [annotate] [blame] [check-ins using] [more...]
% This file tests some of the patches included in the patches.red file. % If the latter file has been correctly installed, none of these should % give an error. % 7 Aug 99. % This did not terminate. df(tan((sqrt(1-x^2)*asin acos x + 2*sqrt(1-x^2)*x)/x),x); % 20 Oct 99. % This gave a wrong answer. a1:=12x^2-16x+3; a2:=3x-4; off mcd; on combineexpt; e^(a1/a2); on mcd; off combineexpt; clear a1,a2; % 8 Nov 99. % This gave a catastrophic error. factorize(2*c*s*u^3*v^5-2*c*s*u^3*v +2*c*s*u*v^5-2*c*s*u*v -s^2*u^4*v^4+s^2*u^4+s^2*u^2*v^6-s^2*u^2*v^4-s^2*u^2*v^2 +s^2*u^2 +s^2*v^6-s^2*v^2+u^4*v^4-u^4*v^2 -v^4+v^2); % 18 Dec 99. % The following integration generated a catastrophic error. load_package numeric; on rounded; f := exp(10*exp(-x)*(x+1-0.1))$ num_int(f,x=(0 .. 300)); off rounded; clear f; % 31 Jan 00. % This gave an error that x was invalid as a kernel. weight x=1,y=1; wtlevel 10; factor x; symbolic(wtl!* := asymplis!* := nil); remfac x; % 5 Feb 00. % This gave a spurious error. matx := mat((1,2)); sign sqrt 42; % 6 Feb 00. % This gave a wrong answer. on complex; sqrt(i*sqrt(3)-1); off complex; % 10 Feb 00. % This gave the error that "***** x= - 2.61803398875 invalid as scalar." on rounded,fullroots; solve(x^3+4*x^2+4*x+1,x); off rounded,fullroots; % 18 Feb 00. % This used to cause a type mismatch error. m := mat((a,b),(c,d)); det sub(a=1,m); % 18 Apr 00. % matchlength!* can now be set to match more products. for all a let opr(a*v) = a*opr(v); opr(a1*a2*a3*a4*a5*v); matchlength!* := 6; opr(a1*a2*a3*a4*a5*v); % 22 Apr 00; % This example created a long list in oldrules!*. procedure hu (x); wq(x) := x^2; wq(2) := 20; for i:=1:1000 do hu i; for i:=1:1000 do hu i; lisp length oldrules!*; % 28 Jul 00. % A sum index within a derivative was treated as an identifier. sum(x^n/factorial n*sub(x=0,df(cos x,x,n)),n,0,5); % 2 Aug 00. % With complex on, some factorizations seemed to run forever. on complex; factorize (400*y^12+400*y^10*z+40*y^9*z^2+100*y^8*z^2 +20*y^7*z^5+120*y^7*z^4+20*y^7*z^3+41*y^6*z^4+60*y^5*z^7 +60*y^5*z^5+20*y^4*z^7+6*y^4*z^6+20*y^4*z^5 +2*y^3*z^6+9*y^2*z^8+6*y*z^8+z^8); off complex; % 29 Aug 00. % This caused a segmentation violation or similar error. load_package gentran,scope; matrix aaa(10,10); on gentranopt; gentran aaa(1,1) ::=: aaa(1,1); off gentranopt; % 19 Sep 00. % This used to give a spurious "not found" message. sqrt_:= {sqrt(~x/~y) => sqrt x/sqrt y}; clearrules sqrt_; clear sqrt_; % 20 Sep 00. % The following caused a catastrophic error. load_package algint; int(1/sqrt((2*e^c-y)/(e^c*y)),y); % 8 Nov 00. % The following did not optimize completely. load_package scope; dX1 := - sqrt(abs(k_l*mttx1 - k_l*mttx2))*sign(k_l*mttx1 - k_l*mttx2)*f*mttu5 + sqrt(abs(k_l*mttx1 - k_s*mttx3 - mttu3))* sign( - k_l*mttx1 + k_s*mttx3 + mttu3)*f*mttu6 + sqrt(abs(k_l*mttx1 - k_s*mttx4 - mttu4))* sign( - k_l*mttx1 + k_s*mttx4 + mttu4)*f*mttu7 - mttu2$ dX2 := sqrt(abs(k_l*mttx1 - k_l*mttx2))*sign(k_l*mttx1 - k_l*mttx2)*f*mttu5 - sqrt(abs(k_l*mttx2 - k_s*mttx3))*sign(k_l*mttx2 - k_s*mttx3)*f*mttu8 - sqrt(abs(k_l*mttx2 - k_s*mttx4))*sign(k_l*mttx2 - k_s*mttx4)*f*mttu9 + mttu1$ dX3 := f*( - sqrt(abs(k_l*mttx1 - k_s*mttx3 - mttu3))* sign( - k_l*mttx1 + k_s*mttx3 + mttu3)*mttu6 + sqrt(abs(k_l*mttx2 - k_s*mttx3))* sign(k_l*mttx2 - k_s*mttx3)*mttu8)$ dX4 := f*( - sqrt(abs(k_l*mttx1 - k_s*mttx4 - mttu4))* sign( - k_l*mttx1 + k_s*mttx4 + mttu4)*mttu7 + sqrt(abs(k_l*mttx2 - k_s*mttx4))* sign(k_l*mttx2 - k_s*mttx4)*mttu9)$ optimize dX1 :=: dX1, dX2 :=: dX2, dX3 :=: dX3, dX4 :=: dX4 iname s$ remprop('!:rd!:,'intequivfn); % 20 Nov 00. % This used to return results in the wrong order. noncom u,v; sum(u(n)*v(1-n),n,0,1); % 13 Dec 00. % This used to go into an infinite loop. on numval,rounded; y:=x^4+x3*x^3+x2*x^2+x1*x+x0; on fullroots; % This one takes a long time. % solve(y,x)$ off numval,rounded,fullroots; clear y; % 9 Jan 01. solve({y=x+t^2,x=y+u^2},{x,y,u,t}); % 14 Jan 01. % This caused an error. resultant(p^3-3p^2-a,3p*(p-2),p); % 19 Jan 01. % Some algebraic integrals could produce a catastrophic error. % Unfortunately, there is no simple example of this problem. % 22 Jan 01. % This used to give a spurious zero divisor error. int((sqrt((-sqrt(a^4*x^2+4)+a^2*x)/(2*x)) *(-sqrt(a^4*x^2+4)*a^2*x-a^4*x^2-4))/(2*(a^4*x^2+4)),x); % This used to return an incorrect result. noncom q; 1/mat((1,0,0),(x/p*q 1,1,0),(x*y/(2p*(p-1))*q 1*q 1,y/(p-2)*q 1,1)); % 2 Feb 01. % This used to give a spurious zero divisor error. solve(sqrt x*sqrt((4x^2*x+1)/x)-1=0,x); % 9 Feb 01. % The patched version of combine!-logs included an undefined macro. % No test is included for this. % 20 Feb 01. % Even with combineexpt on, some expressions did not simplify adequately. on combineexpt; a*a^x; e*e^(2/(2-x)); e^(x+3)*e^(3/(4-3*x))/e^(5*x-3); off combineexpt; % 6 Mar 01. % This produced a stream of "***** Unexpected algebraic" messages and % then aborted. int((x^(2/3)*sqrt(sqrt(y)*sqrt(pi) + 2*pi*y*x)*sqrt( - sqrt(y)*sqrt(pi) + 2pi*y*x))/(4pi*y*x^3 - x),x); end;