Artifact 5428f6fcdb303be7321f8c40300745fa5bf59de8078062a1a4f82b7e6c330266:
- Executable file
r37/packages/specfn/sfsums.red
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 1977) [annotate] [blame] [check-ins using] [more...]
- Executable file
r38/packages/specfn/sfsums.red
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 1977) [annotate] [blame] [check-ins using]
module sfsums; % Calculation of infinite sums of reciprocal % Powers, see e.g. Abramowitz/Stegun ch 23. % % Author: Winfried Neun, Sep 1993 algebraic << let{ sum((-1)^~k /(2*(~k)-1)^~n,~k,1,infinity) => Pi^n*abs(Euler(n-1))/(factorial(n-1) * 2^(n+1)) when fixp n and n > 0 and not evenp n, sum((-1)^~k /(2*(~k)-1)^2,~k,1,infinity) => - Catalan, sum((-1)^~k /(2*(~k)+1)^2,~k,0,infinity) => Catalan, sum(1/(2*(~k)-1)^~n,~k,1,infinity) => Zeta(n) *(1-2^(-n)) when fixp n and n > 0 and evenp n, sum(1/~k^~s,~k,1,infinity) => Zeta(s), sum((-1)^~k/~k^~n,~k,1,infinity) => Zeta(n)* (1-2^(1-n)) when fixp n and n > 0 and evenp n } ; % from Abigail Leeves Sep 15, 97 let { prod((1+(1/~n**2)),~n,~r,infinity) => (((sinh(pi))/pi)/(prod((1+(1/~n**2)),~n,1,(~r-1)))) when (fixp r and r>=1 and r<15), prod((1+(1/~n**3)),~n,~r,infinity) => (((cosh((sqrt(3)*pi)/2))/pi)/(prod((1+(1/~n**3)),~n,1,(~r-1)))) when (fixp r and r>=1 and r< 15), prod((1+(1/~n**4)),~n,~r,infinity) => (((cosh(sqrt(2)*pi))-(cos(sqrt(2)*pi)))/(2*pi**2))/ (prod((1+(1/~n**4)),~n,1,(~r-1))) when (fixp r and r>=1 and r<15), prod((1+(1/~n**5)),~n,~r,infinity) => ((((Gamma(exp((2*pi*i)/5)))*(Gamma(exp((6*pi*i)/5))))**-2)/ (prod((1+(1/~n**5)),~n,1,(~r-1)))) when (fixp r and r>=1 and r<15), prod((1-(4/~n**2)),~n,~r,infinity) => (1/6)/(prod((1-(4/~n**2)),~n,3,(~r-1))) when (fixp r and r<15 and r>=3), prod((1-(8/~n**3)),~n,~r,infinity) => ((sinh(sqrt(3)*pi))/(42*sqrt(3)*pi))/(prod((1-(8/~n**3)),~n,3,(~r-1))) when (fixp r and r<15 and r>=3), prod((1-(16/~n**4)),~n,~r,infinity) => ((sinh(2*pi))/(120*pi))/(prod((1-(16/~n**4)),~n,3,(~r-1))) when (fixp r and r<15 and r>=3), prod((1-(32/~n**5)),~n,~r,infinity) => ((1/1240)*((Gamma(2*exp((pi*i)/5)))* (Gamma(2*exp((7*pi*i)/5)))**-2))/(prod((1-(32/~n**5)),~n,3,(~r-1))) when (fixp r and r<15 and r>=3) }; >>; endmodule; end;