Artifact 4a2a749b7c0c6ce47dfb23c98915097d724baf24815134c59b97f0c870855a8f:
- File
r34.1/xmpl/avector.tst
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 2076) [annotate] [blame] [check-ins using] [more...]
- File
r34/xmpl/avector.tst
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 2076) [annotate] [blame] [check-ins using]
- File
r35/xmpl/avector.tst
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 2076) [annotate] [blame] [check-ins using]
- Executable file
r36/XMPL/AVECTOR.TST
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 2076) [annotate] [blame] [check-ins using]
% Vector test routine % Author: David Harper (algebra@liverpool.ac.uk) % Computer Algebra Support Officer % University of Liverpool Computer Laboratory. % Please compare carefully the output from running this test file with the % log file provided to make sure your implementation is correct. linelength 72; off allfac; on div; vec a,b,c; matrix q; a := avec(ax,ay,az); b := avec(bx,by,bz); q := mat((q11,q12,q13),(q21,q22,q23),(q31,q32,q33)); c := a+b; c := a-b; c := a cross b; d := a dot b; a dot c; b dot c; q*a; c:=2*f*a - b/7; c(0); c(1); c(2); 1/vmod(a); b/vmod(a); (a cross b)/(a dot b); 2/3*vmod(a)*a*(a dot c)/(vmod(a cross c)); a := avec(x**2*y**3,log(z+x),13*z-y); df(a,x); df(a,x,y); int(a,x); exp(a); log sin b; a := avec(ax,ay,az); depend ax,x,y,z; depend ay,x,y,z; depend az,x,y,z; depend p,x,y,z; c := grad p; div c; delsq p; div a; curl a; delsq a; depend h1,x,y,z; depend h2,x,y,z; depend h3,x,y,z; scalefactors(h1,h2,h3); grad p; div a; curl a; dp1 := delsq p; dp2 := div grad p; dp1-dp2; delsq a; curl grad p; grad div a; div curl a; % Examples of integration : (1) Volume integrals getcsystem 'spherical; % Example 1 : integration of r**n over a sphere origin := avec(0,0,0); upperbound := avec(rr,pi,2*pi); volintegral(r**n,origin,upperbound); % Substitute n=0 to get the volume of a sphere sub(n=0,ws); % Example 2 : volume of a right-circular cone getcsystem 'cylindrical; upperbound := avec(pp*z,h,2*pi); volintorder := avec(2,0,1); % Integrate in the order : phi, r, z cone := volintegral(1,origin,upperbound); % Now we replace P*Z by RR to get the result in the familiar form let pp*h=rr; cone := cone; % This is the familiar form clear pp*h; % Example 3 : line integral to obtain the length of a line of latitude % on a sphere getcsystem 'spherical; a := avec(0,0,1); % Function vector is the tangent to the % line of latitude curve := avec(rr,latitude,phi); % Path is round a line of latitude deflineint(a,curve,phi,0,2*pi); end;