Artifact 4928c609fab0160c9893a98b39f9f66757ab03dffc87bdf0c04df46df9107b95:
- File
r35/lib/ideals.red
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 4633) [annotate] [blame] [check-ins using] [more...]
module ideals; % operators for polynomial ideals. % Author: Herbert Melenk. % Copyright (c) 1992 The RAND Corporation and Konrad-Zuse-Zentrum. % All rights reserved. imports groebner; load!-package 'groebner; fluid '(gb!-list!*); global '(id!-vars!*); share id!-vars!*; symbolic procedure i!-setting u; begin scalar o; o := id!-vars!*; id!-vars!* := 'list . for each x in u collect reval x; gb!-list!* := nil; return o; end; put('i_setting,'psopfn,'i!-setting); algebraic operator I; symbolic procedure ideal2list u; 'list . cdr test!-ideal u; symbolic operator ideal2list; symbolic procedure GB u; begin scalar v,w; u:= test!-ideal reval u; v:={u,id!-vars!*,vdpsortmode!*}; w:=assoc(v,gb!-list!*); return if w then cdr w else GB!-new u; end; symbolic procedure GB!-new u; begin scalar v,w; u:= test!-ideal reval u; v:={u,id!-vars!*,vdpsortmode!*}; w:='I . cdr groebnereval{'list . cdr u,id!-vars!*}; gb!-list!* := (v.w) . gb!-list!*; gb!-list!* := ((w.cdr v).w) . gb!-list!*; return w; end; symbolic operator GB; symbolic procedure test!-ideal u; if not eqcar(id!-vars!*,'list) then typerr(id!-vars!*,"ideal setting; set variables first") else if eqcar(u,'LIST) then 'I.cdr u else if not eqcar(u,'I) then typerr(u,"polynomial ideal") else u; symbolic procedure idealp u; eqcar(u,'I) or eqcar(u,'list); symbolic operator idealp; newtok '((!. !=) id!-equal); algebraic operator id!-equal; infix id!-equal; precedence id!-equal,=; symbolic procedure GB!-equal(a,b); if gb a = gb b then 1 else 0; symbolic operator GB!-equal; algebraic << let (~a .= ~b) => GB!-equal(a,b) when idealp a and idealp b>>; symbolic procedure GB!-member(p,u); if 0=preduceeval{p,ideal2list GB u,id!-vars!*} then 1 else 0; symbolic operator GB!-member; algebraic operator member; algebraic << let ~a member ~b => GB!-member(a,b) when idealp b>>; symbolic procedure GB!-subset(a,b); begin scalar q; q:= t; a:=cdr test!-ideal reval a; b:=ideal2list GB b; for each p in a do q:=q and 0=preduceeval{p,b,id!-vars!*}; return if q then 1 else 0; end; symbolic operator GB!-subset; algebraic operator subset; infix subset; precedence subset,member; algebraic << let (~a subset ~b) => GB!-subset(a,b) when idealp a and idealp b>>; symbolic procedure GB!-plus(a,b); <<a := cdr test!-ideal reval a; b := cdr test!-ideal reval b; gb ('I.append(a,b)) >>; symbolic operator GB!-plus; algebraic operator .+; algebraic << let (~a .+ ~b) => GB!-plus(a,b) when idealp a and idealp b>>; symbolic procedure GB!-times(a,b); <<a := cdr test!-ideal reval a; b := cdr test!-ideal reval b; gb ('I. for each p in a join for each q in b collect {'times,p,q}) >>; symbolic operator GB!-times; algebraic operator .*; algebraic << let (~a .* ~b) => GB!-times(a,b) when idealp a and idealp b>>; symbolic procedure GB!-intersect(a,b); begin scalar tt,oo,q,v; tt:='!-!-t; v:= id!-vars!*; oo := eval '(torder '(lex)); a := cdr test!-ideal reval a; b := cdr test!-ideal reval b; q:='I. append( for each p in a collect {'times,tt,p}, for each p in b collect {'times,{'difference,1,tt},p}); id!-vars!* := 'list . tt. cdr id!-vars!*; q:= errorset({'gb,mkquote q},nil,!*backtrace); id!-vars!* := v; eval{'torder,mkquote{oo}}; if errorp q then rederr "ideal intersection failed"; q:=for each p in cdar q join if not smemq(tt,p) then {p}; return gb('I . q); end; symbolic operator GB!-intersect; algebraic operator intersection; algebraic << let intersection (~a , ~b) => GB!-intersect(a,b) when idealp a and idealp b>>; newtok '((!. !:) id!-quotient); algebraic operator id!-quotient; infix id!-quotient; precedence id!-quotient,/; symbolic procedure GB!-quotient(a,b); <<a := test!-ideal reval a; b := test!-ideal reval b; GB!-quotient1(a,cdr b)>>; symbolic procedure GB!-quotient1(a,b); begin scalar q; q:='I.cdr idquotienteval{ideal2list a,car b,id!-vars!*}; return if null cdr b then q else GB!-intersect(q,GB!-quotient1(a,cdr b)); end; symbolic operator GB!-quotient; algebraic operator over; algebraic << let (~a ./ ~b) => GB!-quotient(a,b) when idealp a and idealp b>>; algebraic << let (~a .: ~b) => GB!-quotient(a,b) when idealp a and idealp b>>; endmodule; end;