Artifact 4463c8a4789468201e31f9571e9b02b17e062c8c54a900f1563c5c71a6e97b61:
- Executable file
r36/XMPL/XIDEAL.TST
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 2012) [annotate] [blame] [check-ins using] [more...]
% Test file for XIDEAL package (Groebner bases for exterior algebra) % Just make sure excalc has been loaded load_package excalc$ % Declare exterior form variables pform x=0,y=0,z=0,t=0,u=1,v=1,w=1,f(i)=1,h=0,hx=0,ht=0; % Set switches for reduced Groebner bases in graded ideals on xfullreduce; % Reductions with xmodulo (all should be zero) d x^d y xmodulo {d x - d y}; d x^d y^d z xmodulo {d x^d y - d z^d t}; d x^d z^d t xmodulo {d x^d y - d z^d t}; v^d x^d y xmodulo {d t^u - v^w, w^u - d x^d y}; d t^u^d z xmodulo {d t^u - v^w, u^d z - d x^d y, d t^d y - d x^v}; f(3)^f(4)^f(5)^f(6) xmodulo {f(1)^f(2) + f(3)^f(4) + f(5)^f(6)}; f(1)^f(4)^f(5)^f(6) xmodulo {f(1)^f(2) + f(2)^f(3) + f(3)^f(4) + f(4)^f(5) + f(5)^f(6)}; % Exterior system for heat equation on 1st jet bundle S := {d h - ht*d t - hx*d x, d ht^d t + d hx^d x, d hx^d t - ht*d x^d t}; % Check that it's closed. dS := (for each a in S collect d a) xmodulo S; % Some Groebner bases (0-forms generate the trivial ideal) gb := xideal {x, d y}; gb := xideal {f(1)^f(2) + f(3)^f(4)}; gb := xideal {f(1)^f(2), f(1)^f(3)+f(2)^f(4)+f(5)^f(6)}; % The same again, but not reduced off xfullreduce; gb := xideal {x, d y}; gb := xideal {f(1)^f(2) + f(3)^f(4)}; gb := xideal {f(1)^f(2), f(1)^f(3)+f(2)^f(4)+f(5)^f(6)}; % Reductions with a ready Groebner basis (not all zero) on xfullreduce; gb := xideal {f(1)^f(2) + f(3)^f(4) + f(5)^f(6)}; f(1)^f(3)^f(4) xmodulop gb; f(3)^f(4)^f(5)^f(6) xmodulop gb; % Non-graded ideals on xfullreduce; % Left and right ideals are no longer the same d t^(d z+d x^d y) xmodulo {d z+d x^d y}; (d z+d x^d y)^d t xmodulo {d z+d x^d y}; % Higher order forms can now reduce lower order ones d x xmodulo {d y^d z + d x,d x^d y + d z}; % Anything with a 0-form term generates the trivial ideal!! gb := xideal {x + d y}; gb := xideal {1 + f(1) + f(1)^f(2) + f(2)^f(3)^f(4) + f(3)^f(4)^f(5)^f(6)}; end;