Artifact 427ae12718f036b845bcde4b23903f005d75f6b7b735ffd77b8f6055d0106fc1:
- Executable file
r37/packages/mathpr/mprint.red
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 14357) [annotate] [blame] [check-ins using] [more...]
module mprint; % Basic output package for symbolic expressions. % Authors: Anthony C. Hearn and Arthur C. Norman. % Copyright (c) 1991 RAND. All rights reserved. fluid '(!*fort !*list !*nat !*nosplit !*ratpri !*revpri bool!-functions!* obrkp!* overflowed!* orig!* outputhandler!* pline!* posn!* p!*!* testing!-width!* ycoord!* ymax!* ymin!* rprifn!* rterfn!*); fluid '(!*TeX); global '(!*eraise initl!* nat!*!* spare!* !*asterisk); switch list,ratpri,revpri,nosplit,asterisk; % Global variables initialized in this section. % SPARE!* should be set in the system dependent code module, % but is now assumed to be zero. !*asterisk := t; !*eraise := t; !*nat := nat!*!* := t; !*nosplit := t; % Expensive, maybe?? obrkp!* := t; orig!*:=0; posn!* := 0; ycoord!* := 0; ymax!* := 0; ymin!* := 0; initl!* := append('(orig!* pline!*),initl!*); put('orig!*,'initl,0); flag('(linelength),'opfn); %to make it a symbolic operator; symbolic procedure mathprint l; << terpri!* t; maprin l; terpri!* t >>; symbolic procedure maprin u; if outputhandler!* then apply2(outputhandler!*,'maprin,u) else if not overflowed!* then maprint(u,0); symbolic procedure maprint(l,p!*!*); % Print expression l at bracket level p!*!* without terminating % print line. Special cases are handled by: % pprifn: a print function that includes bracket level as 2nd arg. % prifn: a print function with one argument. begin scalar p,x,y; p := p!*!*; % p!*!* needed for (expt a (quotient ...)) case. if null l then return nil else if atom l then <<if vectorp l then vec!-maprin(l,p!*!*) else if not numberp l or (not(l<0) or p<=get('minus,'infix)) then prin2!* l else <<prin2!* "("; prin2!* l; prin2!* ")">>; return l >> else if not atom car l then maprint(car l,p) else if ((x := get(car l,'pprifn)) and not(apply2(x,l,p) eq 'failed)) or ((x := get(car l,'prifn)) and not(apply1(x,l) eq 'failed)) then return l else if x := get(car l,'infix) then << p := not(x>p); if p then << y := orig!*; prin2!* "("; orig!* := if posn!*<18 then posn!* else orig!*+3 >>; % (expt a b) was dealt with using a pprifn sometime earlier than this inprint(car l,x,cdr l); if p then << prin2!* ")"; orig!* := y >>; return l >> else prin2!* car l; prin2!* "("; obrkp!* := nil; y := orig!*; orig!* := if posn!*<18 then posn!* else orig!*+3; if cdr l then inprint('!*comma!*,0,cdr l); obrkp!* := t; orig!* := y; prin2!* ")"; return l end; symbolic procedure vec!-maprin(u,p!*!*); <<prin2!* '![; for j:=0:(upbv(u)-1) do <<maprint(getv(u,j),p!*!*); oprin '!*comma!*>>; maprint(getv(u,upbv(u)),p!*!*); prin2!* '!]>>; symbolic procedure exptpri(l,p); % Prints expression in an exponent notation. begin scalar !*list,x,pp,q,w1,w2; if not !*nat or !*fort then return 'failed; pp := not((q:=get('expt,'infix))>p); % Need to parenthesize w1 := cadr l; w2 := caddr l; if !*eraise and not atom w1 and (x := get(car w1, 'prifn)) and get(x, 'expt) = 'inbrackets then % Special treatment here to avoid muddle between exponents and % raised indices w1 := layout!-formula(w1, 0, 'inbrackets) % Very special treatment for things that will be displayed with % subscripts else if x = 'indexprin and not (indexpower(w1, w2)='failed) then return nil else w1 := layout!-formula(w1, q, nil); if null w1 then return 'failed; begin scalar !*ratpri; % I do not display fractions with fraction bars in exponent % expressions, since it usually seems excessive. Also (-p)/q gets % turned into -(p/q) for printing here if eqcar(w2,'quotient) and eqcar(cadr w2,'minus) then w2 := list('minus,list(car w2,cadadr w2,caddr w2)) else w2 := negnumberchk w2; w2 := layout!-formula(w2, if !*eraise then 0 else q, nil) end; if null w2 then return 'failed; l := cdar w1 + cdar w2; if pp then l := l + 2; if l > linelength nil - spare!* - orig!* then return 'failed; if l > linelength nil - spare!* - posn!* then terpri!* t; if pp then prin2!* "("; putpline w1; if !*eraise then l := 1 - cadr w2 else << oprin 'expt; l := 0 >>; putpline ((update!-pline(0, l, caar w2) . cdar w2) . ((cadr w2 + l) . (cddr w2 + l))); if pp then prin2!* ")" end; put('expt,'pprifn,'exptpri); symbolic procedure inprint(op,p,l); begin scalar x,y,z; if op='times and !*nat and null !*asterisk then <<op:='times2; put('times2,'infix,get('times,'infix)); put('times2,'prtch," ")>>; if op eq 'plus and !*revpri then l := reverse l; % print sum arguments in reverse order. if not get(op,'alt) then << if op eq 'not then oprin op else if op eq 'setq and not atom (x := car reverse l) and idp car x and (y := getrtype x) and (y := get(get(y,'tag),'setprifn)) then return apply2(y,car l,x); if null atom car l and idp caar l and !*nat and ((x := get(caar l,'prifn)) or (x := get(caar l,'pprifn))) and (get(x,op) eq 'inbrackets) % to avoid mix up of indices and exponents. then<<prin2!* "("; maprint(car l,p); prin2!* ")">> else if !*nosplit and not testing!-width!* then prinfit(car l, p, nil) else maprint(car l, p); l := cdr l >>; if !*nosplit and not testing!-width!* then % The code here goes to a certain amount of trouble to try to arrange % that terms are never split across lines. This will slow % printing down a bit, but I hope the improvement in formatting will % be worth that. for each v in l do if atom v or not(op eq get(car v,'alt)) then << % It seems to me that it looks nicer to put +, - etc on the second % line, but := and comma usually look better on the first one when I % need to split things. if op memq '(setq !*comma!*) then << oprin op; prinfit(negnumberchk v, p, nil) >> else prinfit(negnumberchk v, p, op) >> else prinfit(v, p, nil) else for each v in l do << if atom v or not(op eq get(car v,'alt)) then <<oprin op; maprint(negnumberchk v,p)>> % difficult problem of negative numbers needing to be in % prefix form for pattern matching. else maprint(v,p) >> end; symbolic procedure flatsizec u; if null u then 0 else if atom u then lengthc u else flatsizec car u + flatsizec cdr u + 1; symbolic procedure oprin op; (lambda x; if null x then <<prin2!* " "; prin2!* op; prin2!* " ">> else if !*fort then prin2!* x else if !*list and obrkp!* and op memq '(plus minus) then if testing!-width!* then overflowed!* := t else <<terpri!* t; prin2!* x>> else if flagp(op,'spaced) then <<prin2!* " "; prin2!* x; prin2!* " ">> else prin2!* x) get(op,'prtch); symbolic procedure prin2!* u; begin integer m,n,p; scalar x; if x := get(u,'oldnam) then u := x; if overflowed!* then return 'overflowed else if !*fort then return fprin2!* u else if !*nat then << if u = 'pi then u := symbol '!.pi else if u = 'infinity then u := symbol 'infinity>>; n := lengthc u; % Suggested by Wolfram Koepf: if fixp u and n>50 and !*rounded then return rd!:prin i2rd!* u; m := posn!* #+ n; p := linelength nil - spare!*; return if m<=p or (not testing!-width!* % The next line controls whether to add a newline before a long id. % At present it causes one in front of a number too. and <<not fixp u and terpri!* t; (m := posn!* #+ n)<=p>>) then add_prin_char(u,m) % Identifier longer than one line. else if testing!-width!* then <<overflowed!* := t;'overflowed>> else prin2lint(u,posn!* #+ 1,p #- 1) end; symbolic procedure add_prin_char(u,n); if null !*nat then if stringp u or get(u,'switch!*) or digit u or get(car explode2 u,'switch!*) then prin2 u else prin1 u else <<pline!* := (((posn!* . n) . ycoord!*) . u) . pline!*; posn!* := n>>; symbolic procedure prin2lint(u,m,n); begin scalar v,bool; % bool prevents an initial backslash. v := explode2 u; if null !*nat then <<terpri(); posn!* := orig!*>>; a: if not(m#<n and v) then go to b else if car v eq !$eol!$ then <<v := cdr v; go to c>>; bool := t; add_prin_char(car v,m); v := cdr v; m := m #+ 1; go to a; b: if null v then return(posn!* := m #- 1) else if bool then add_prin_char("\",m); c: if !*nat then terpri!* nil else <<terpri(); posn!* := orig!*>>; m := posn!* #+ 1; go to a end; symbolic procedure terpri!* u; begin integer n; if outputhandler!* then return apply2(outputhandler!*,'terpri,u) else if testing!-width!* then return overflowed!* := t else if !*fort then return fterpri(u) else if !*nat and pline!* then << pline!* := reverse pline!*; for n := ymax!* step -1 until ymin!* do << scprint(pline!*,n); terpri() >>; pline!* := nil >>; if u then terpri(); posn!* := orig!*; ycoord!* := ymax!* := ymin!* := 0 end; symbolic procedure scprint(u,n); begin scalar m; posn!* := 0; for each v in u do << if cdar v=n then << if not((m:= caaar v-posn!*)<0) then spaces m; prin2 cdr v; posn!* := cdaar v >> >> end; % Formatted printing of expressions. % This one should be eliminated. symbolic procedure writepri(u,v); assgnpri(eval u,nil,v); symbolic procedure exppri(u,v); assgnpri(u,nil,v); symbolic procedure assgnpri(u,v,w); begin scalar x; % U is expression being printed. % V is a list of expressions assigned to U. % W is an id that indicates if U is the first, only or last element % in the current set (or NIL otherwise). % Returns NIL. testing!-width!* := overflowed!* := nil; if null u then u := 0; if !*nero and u=0 then return nil; % Special cases. These tests need to be generalized. if !*TeX then return texpri(u,v,w) else if getd 'vecp and vecp u then return vecpri(u,'mat); if (x := getrtype u) and flagp(x,'sprifn) and null outputhandler!* then <<if null v then apply1(get(get(x,'tag),'prifn),u) else maprin list('setq,car v,u); return nil>>; if w memq '(first only) then terpri!* t; v := evalvars v; if !*fort then <<fvarpri(u,v,w); return nil>>; maprin if v then 'setq . aconc(v,u) else u; if null w or w eq 'first then return nil else if not !*nat then prin2!* "$"; terpri!*(not !*nat); return nil end; symbolic procedure evalvars u; % Used only in ASSGNPRI. We may need to expand the second test. % At the moment, it catches things like x-y:=0. if null u then nil else if atom car u or flagp(caar u,'intfn) then car u . evalvars cdr u else if get(get(caar u,'rtype),'setelemfn) then (caar u . revlis_without_mode cdar u) . evalvars cdr u else (caar u . revlis cdar u) . evalvars cdr u; symbolic procedure revlis_without_mode u; for each j in u collect (reval j where dmode!* := nil); % Definition of some symbols and their access function. symbolic procedure symbol s; get(s,'symbol!-character); put('!.pi, 'symbol!-character, 'pi); put('bar, 'symbol!-character, '!-); put('int!-top, 'symbol!-character, '!/); put('int!-mid, 'symbol!-character, '!|); put('int!-low, 'symbol!-character, '!/); put('d, 'symbol!-character, '!d); % This MUST be lower case %%put('sqrt, 'symbol!-character, 'sqrt);% No useful fallback here put('vbar, 'symbol!-character, '!|); put('sum!-top, 'symbol!-character, "---"); put('sum!-mid, 'symbol!-character, "> "); put('sum!-low, 'symbol!-character, "---"); put('prod!-top, 'symbol!-character, "---"); put('prod!-mid, 'symbol!-character, "| |"); put('prod!-low, 'symbol!-character, "| |"); put('infinity, 'symbol!-character, 'infinity); % In effect nothing special put('mat!-top!-l, 'symbol!-character, '![); put('mat!-top!-r, 'symbol!-character, '!]); put('mat!-low!-l, 'symbol!-character, '![); put('mat!-low!-r, 'symbol!-character, '!]); % The following definitions allow for more natural printing of % conditional expressions within rule lists. bool!-functions!* := for each x in {'equal,'greaterp,'lessp,'geq,'leq,'neq,'numberp} collect get(x,'boolfn) . x; symbolic procedure condpri(u,p); <<if p>0 then prin2!* "("; while (u := cdr u) do <<if not(caar u eq 't) then <<prin2!* 'if; prin2!* " "; maprin sublis(bool!-functions!*,caar u); prin2!* " "; prin2!* 'then; prin2!* " ">>; maprin cadar u; if cdr u then <<prin2!* " "; prin2!* 'else; prin2!* " ">>>>; if p>0 then prin2!* ")">>; put('cond,'pprifn,'condpri); symbolic procedure revalpri u; maprin eval cadr u; put('aeval,'prifn,'revalpri); put('reval,'prifn,'revalpri); symbolic procedure boolvalpri u; maprin cadr u; put('boolvalue!*,'prifn,'boolvalpri); put('prog,'prifn,'progpri); put('progn,'prifn,'progpri); symbolic procedure progpri u; (rprint u) where rprifn!* = 'prin2!*, rterfn!* = function(lambda();terpri!* nil); endmodule; end;