Artifact 3a3d831d26ca0208802bf3e6224db4469388666c6cff07ca59172e7525ee0fb7:
- Executable file
r37/packages/support/fastmod.red
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 4400) [annotate] [blame] [check-ins using] [more...]
module fastmod; % fast computation with modular numbers. % Author: Herbert Melenk <melenk@sc.zib-berlin.de>. % % ( a * b ) mod current!-modulus % % in one call with double length intermediate result, avoiding % conversion to bignums. Significant speedup for e.g. factorizer. remflag('(modular!-times general!-modular!-times),'lose); compiletime << if memq('nbig30a,options!*) then load muls else load muls32; slow_wquotientdouble := memq('mips,lispsystem!*); >>; fluid '(!*second!-value!* current!-modulus); remflag('(modular!-times general!-modular!-times),'lose); % Routines from smallmod.red and genmod.red compiletime if slow_wquotientdouble then flag('(modular!-times),'lose); symbolic procedure modular!-times(a,b); begin scalar q; q:=wtimesdouble(a,b); % upper part in second value. wquotientdouble(!*second!-value!*,q,current!-modulus); % remainder in second value. return !*second!-value!*; end; compiletime if slow_wquotientdouble then remflag('(modular!-times),'lose) else flag('(modular!-times),'lose); symbolic procedure modular!-times(a,b); % for systems where single divide is substantially faster than % double divide. begin scalar q; q:=wtimesdouble(a,b); % upper part in second value. if weq(!*second!-value!*,0) and wgreaterp(q,0) then return wremainder(q,current!-modulus); wquotientdouble(!*second!-value!*,q,current!-modulus); % remainder in second value. return !*second!-value!*; end; compiletime remflag('(modular!-times),'lose); symbolic procedure general!-modular!-times(a,b); % Use fast function if all operands are inums. if weq(0,iplus2(tag a,iplus2(tag b,tag current!-modulus))) then modular!-times(a,b) else general!-modular!-times!*(a,b); symbolic procedure general!-modular!-times!*(a,b); begin scalar result; result:=remainder(a*b,current!-modulus); if result<0 then result := result+current!-modulus; %can this happen? return result end; flag ('(modular!-times general!-modular!-times),'lose); % Routines from factor/VECPOLY.red. % Smallmod arithmetic never allocates heap space such % that vector base addresses remain valid and subsequent % vector access can be transformed into index incremental. remflag('(times!-in!-vector remainder!-in!-vector),'lose); SYMBOLIC PROCEDURE TIMES!-IN!-VECTOR(A,DA,B,DB,C); % Put the product of A and B into C and return its degree. % C must not overlap with either A or B; BEGIN SCALAR DC,IC,W,lc,lb; IF ilessp(DA,0) OR ilessp(DB,0) THEN RETURN MINUS!-ONE; DC:=iplus2(DA,DB); FOR I:=0:DC DO PUTV(C,I,0); FOR IA:=0:DA DO << W:=GETV(A,IA); lb := loc igetv(b,0); lc := loc igetv(c,ia); FOR IB:=0:DB DO << IC:=iplus2(IA,IB); % PUTV(C,IC,MODULAR!-PLUS(GETV(C,IC), % MODULAR!-TIMES(W,GETV(B,IB)))) putmem(lc,MODULAR!-PLUS(getmem lc, MODULAR!-TIMES(W,getmem lb))); lb := iplus2(lb,addressingunitsperitem); lc := iplus2(lc,addressingunitsperitem); >> >>; RETURN DC END; SYMBOLIC PROCEDURE REMAINDER!-IN!-VECTOR(A,DA,B,DB); % Overwrite the vector A with the remainder when A is % divided by B, and return the degree of the result; BEGIN SCALAR DELTA,DB!-1,RECIP!-LC!-B,W,la,lb; IF DB=0 THEN RETURN MINUS!-ONE ELSE IF DB=MINUS!-ONE THEN ERRORF "ATTEMPT TO DIVIDE BY ZERO"; RECIP!-LC!-B:=MODULAR!-MINUS MODULAR!-RECIPROCAL GETV(B,DB); DB!-1:=isub1 DB; % Leading coeff of B treated specially, hence this; WHILE NOT ilessp(DELTA:=idifference(DA,DB),0) DO << W:=MODULAR!-TIMES(RECIP!-LC!-B,GETV(A,DA)); la := loc(igetv(a,delta)); lb:= loc(igetv(b,0)); FOR I:=0:DB!-1 DO %PUTV(A,I#+DELTA,MODULAR!-PLUS(GETV(A,I#+DELTA), % MODULAR!-TIMES(GETV(B,I),W))); <<putmem(la,MODULAR!-PLUS(getmem la, MODULAR!-TIMES(getmem lb,w))); la := iplus2(la,addressingunitsperitem); lb := iplus2(lb,addressingunitsperitem); >>; DA:=isub1 DA; WHILE NOT ilessp(DA,0) AND GETV(A,DA)=0 DO DA:=isub1 DA >>; RETURN DA END; flag('(times!-in!-vector remainder!-in!-vector),'lose); endmodule; end;