Artifact 37953f2f7f2320cc364d8c4a661b3492f087d92b944c50a3eda2eddeae5c447c:
- Executable file
r38/packages/crack/applysym.tst
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 6511) [annotate] [blame] [check-ins using] [more...]
load crack,applysym$ %*******************************************************************% % % % A P P L Y S Y M . T S T % % ----------------------- % % applysym.tst contains test examples to test the procedure % % quasilinpde in the file applysym.red. % % % % Author: Thomas Wolf % % Date: 22 May 1998 % % % % You need crack.red and applysym.red to run this demo. % % To use other contents of the program applysym, not demonstrated % % in this demo you need the program liepde.red. % % % % To run this demo you read in files with % % in "crack.red"$ % % in "applysym.red"$ % % or, to speed up the calculation you compile them before with % % faslout "crack"$ % % in "crack.red"$ % % faslend$ % % faslout "applysym"$ % % in "applysym.red"$ % % faslend$ % % and then load them with % % load crack,applysym$ % % % %*******************************************************************% load crack; lisp(depl!*:=nil)$ % clearing of all dependencies setcrackflags()$ lisp(print_:=nil)$ on dfprint$ comment ------------------------------------------------------- This file is supposed to provide an automatic test of the program APPLYSYM. On the other hand the application of APPLYSYM is an interactive process, therefore the interested user should inspect the example described in APPLYSYM.TEX which demonstrates the application of symmetries to integrate a 2nd order ODE. Here the program QUASILINPDE for integrating first order quasilinear PDE is demonstrated. The following equation comes up in the elimination of resonant terms in normal forms of singularities of vector fields (C.Herssens, P.Bonckaert, Limburgs Universitair Centrum/Belgium, private communication); write"-------------------"$ lisp(print_:=nil)$ depend w,x,y,z$ QUASILINPDE( df(w,x)*x+df(w,y)*y+2*df(w,z)*z-2*w-x*y, w, {x,y,z} )$ nodepend w,x,y,z$ comment ------------------------------------------------------- The result means that w is defined implicitly through x*y - log(z)*x*y + 2*w y 0 = ff(-----,---------------------,---------) z z sqrt(z) with an arbitrary function ff of 3 arguments. As the PDE was linear, the arguments of ff are such that we can solve for w: x*y y w = log(z)*x*y/2 + z*f(-----,---------) z sqrt(z) with an arbitrary function f of 2 arguments. ------------------------------------------------------- The following PDEs are taken from E. Kamke, Loesungsmethoden und Loesungen von Differential- gleichungen, Partielle Differentialgleichungen erster Ordnung, B.G. Teubner, Stuttgart (1979); write"-------------------"$% equation 1.4 ---------------------- lisp(depl!*:=nil)$ depend z,x,y$ QUASILINPDE( x*df(z,x)-y, z, {x,y})$ write"-------------------"$% equation 2.5 ---------------------- lisp(depl!*:=nil)$ depend z,x,y$ QUASILINPDE( x**2*df(z,x)+y**2*df(z,y), z, {x,y})$ write"-------------------"$% equation 2.6 ---------------------- lisp(depl!*:=nil)$ depend z,x,y$ QUASILINPDE( (x**2-y**2)*df(z,x)+2*x*y*df(z,y), z, {x,y})$ write"-------------------"$% equation 2.7 ---------------------- lisp(depl!*:=nil)$ depend z,x,y$ QUASILINPDE( (a0*x-a1)*df(z,x)+(a0*y-a2)*df(z,y), z, {x,y})$ write"-------------------"$% equation 2.14 --------------------- lisp(depl!*:=nil)$ depend z,x,y$ QUASILINPDE( a*df(z,x)+b*df(z,y)-x**2+y**2, z, {x,y})$ write"-------------------"$% equation 2.16 --------------------- lisp(depl!*:=nil)$ depend z,x,y$ QUASILINPDE( x*df(z,x)+y*df(z,y)-a*x, z, {x,y})$ write"-------------------"$% equation 2.20 --------------------- lisp(depl!*:=nil)$ depend z,x,y$ QUASILINPDE( df(z,x)+df(z,y)-a*z, z, {x,y})$ write"-------------------"$% equation 2.21 --------------------- lisp(depl!*:=nil)$ depend z,x,y$ QUASILINPDE( df(z,x)-y*df(z,y)+z, z, {x,y})$ write"-------------------"$% equation 2.22 --------------------- lisp(depl!*:=nil)$ depend z,x,y$ QUASILINPDE( 2*df(z,x)-y*df(z,y)+z, z, {x,y})$ write"-------------------"$% equation 2.23 --------------------- lisp(depl!*:=nil)$ depend z,x,y$ QUASILINPDE( a*df(z,x)+y*df(z,y)-b*z, z, {x,y})$ write"-------------------"$% equation 2.24 --------------------- lisp(depl!*:=nil)$ depend z,x,y$ QUASILINPDE( x*(df(z,x)-df(z,y))-y*df(z,y), z,{x,y})$ write"-------------------"$% equation 2.25 --------------------- lisp(depl!*:=nil)$ depend z,x,y$ QUASILINPDE( x*df(z,x)+y*df(z,y)-az, z, {x,y})$ write"-------------------"$% equation 2.26 --------------------- lisp(depl!*:=nil)$ depend z,x,y$ QUASILINPDE( x*df(z,x)+y*df(z,y)-z+x**2+y**2-1, z, {x,y})$ write"-------------------"$% equation 2.39 --------------------- lisp(depl!*:=nil)$ depend z,x,y$ QUASILINPDE( a*x**2*df(z,x)+b*y**2*df(z,y)-c*z**2, z, {x,y})$ write"-------------------"$% equation 2.40 --------------------- lisp(depl!*:=nil)$ depend z,x,y$ QUASILINPDE( x*y**2*df(z,x)+2*y**3*df(z,y)-2*(y*z-x**2)**2, z, {x,y})$ write"-------------------"$% equation 3.12 --------------------- lisp(depl!*:=nil)$ depend w,x,y,z$ QUASILINPDE( x*df(w,x)+(a*x+b*y)*df(w,y)+(c*x+d*y+f*z)*df(w,z), w, {x,y,z})$ write"-------------------"$% end ------------------------------- lisp(depl!*:=nil)$ end$