Artifact 301b1c2974ac948bc5d040d94b1b7cd8f0b750cfe7d79e744b603526cd075c33:
- File
r34.1/xmpl/taylor.tst
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 18589) [annotate] [blame] [check-ins using] [more...]
comment Test and demonstration file for the Taylor expansion package, by Rainer M. Schoepf. Works with version 1.4b (16-Apr-92); showtime; on errcont; % disable interruption on errors comment Simple Taylor expansion; xx := taylor (e**x, x, 0, 4); yy := taylor (e**y, y, 0, 4); comment Basic operations, i.e. addition, subtraction, multiplication, and division are possible: this is not done automatically if the switch TAYLORAUTOCOMBINE is OFF. In this case it is necessary to use taylorcombine; taylorcombine (xx**2); taylorcombine (ws - xx); comment The result is again a Taylor kernel; if taylorseriesp ws then write "OK"; comment It is not possible to combine Taylor kernels that were expanded with respect to different variables; taylorcombine (xx**yy); comment But we can take the exponential or the logarithm of a Taylor kernel; taylorcombine (e**xx); taylorcombine log ws; comment We may try to expand about another point; taylor (xx, x, 1, 2); comment Arc tangent is one of the functions this package knows of; xxa := taylorcombine atan ws; comment Sine another one; taylor (tan x / x, x, 0, 2); taylorcombine sin ws; comment Expansion with respect to more than one kernel is possible; xy := taylor (e**(x+y), x, 0, 2, y, 0, 2); taylorcombine (ws**2); comment We take the inverse and convert back to REDUCE's standard representation; taylorcombine (1/ws); taylortostandard ws; comment Some examples of Taylor kernel divsion; xx1 := taylor (sin (x), x, 0, 4); taylorcombine (xx/xx1); taylorcombine (1/xx1); tt1 := taylor (exp (x), x, 0, 3); tt2 := taylor (sin (x), x, 0, 3); tt3 := taylor (1 + tt2, x, 0, 3); taylorcombine(tt1/tt2); taylorcombine(tt1/tt3); taylorcombine(tt2/tt1); taylorcombine(tt3/tt1); comment Here's what I call homogeneous expansion; xx := taylor (e**(x*y), {x,y}, 0, 2); xx1 := taylor (sin (x+y), {x,y}, 0, 2); xx2 := taylor (cos (x+y), {x,y}, 0, 2); temp := taylorcombine (xx/xx2); taylorcombine (ws*xx2); comment The following shows a principal difficulty: since xx1 is symmetric in x and y but has no constant term it is impossible to compute 1/xx1; taylorcombine (1/xx1); comment Substitution in Taylor expressions is possible; sub (x=z, xy); comment Expression dependency in substitution is detected; sub (x=y, xy); comment It is possible to replace a Taylor variable by a constant; sub (x=4, xy); sub (x=4, xx1); comment This package has three switches: TAYLORKEEPORIGINAL, TAYLORAUTOEXPAND, and TAYLORAUTOCOMBINE; on taylorkeeporiginal; temp := taylor (e**(x+y), x, 0, 5); taylorcombine (log (temp)); taylororiginal ws; taylorcombine (temp * e**x); on taylorautoexpand; taylorcombine ws; taylororiginal ws; taylorcombine (xx1 / x); on taylorautocombine; xx / xx2; ws * xx2; comment Another example that shows truncation if Taylor kernels of different expansion order are combined; comment First we increase the number of terms to be printed; taylorprintterms := all; p := taylor (x**2 + 2, x, 0, 10); p - x**2; p - taylor (x**2, x, 0, 5); taylor (p - x**2, x, 0, 6); off taylorautocombine; taylorcombine(p-x**2); taylorcombine(p - taylor(x**2,x,0,5)); comment Switch back; taylorprintterms := 6; comment Some more examples; taylor ((1 + x)**n, x, 0, 3); taylor (e**(-a*t) * (1 + sin(t)), t, 0, 4); operator f; taylor (1 + f(t), t, 0, 3); clear f; taylor (sqrt(1 + a*x + sin(x)), x, 0, 3); taylorcombine (ws**2); taylor (sqrt(1 + x), x, 0, 5); taylor ((cos(x) - sec(x))^3, x, 0, 5); taylor ((cos(x) - sec(x))^-3, x, 0, 5); taylor (sqrt(1 - k^2*sin(x)^2), x, 0, 6); taylor (sin(x + y), x, 0, 3, y, 0, 3); comment A problem are non-analytic terms: there are no precautions taken to detect or handle them; taylor (sqrt (x), x, 0, 2); taylor (e**(1/x), x, 0, 2); comment Even worse: you can substitute a non analytical kernel; sub (y = sqrt (x), yy); comment Expansion about infinity is possible in principle...; taylor (e**(1/x), x, infinity, 5); xi := taylor (sin (1/x), x, infinity, 5); y1 := taylor(x/(x-1), x, infinity, 3); z := df(y1, x); comment ...but far from being perfect; taylor (1 / sin (x), x, infinity, 5); comment The template of a Taylor kernel can be extracted; taylortemplate yy; taylortemplate xxa; taylortemplate xi; taylortemplate xy; taylortemplate xx1; comment Here is a slightly less trivial example; exp := (sin (x) * sin (y) / (x * y))**2; taylor (exp, x, 0, 1, y, 0, 1); taylor (exp, x, 0, 2, y, 0, 2); tt := taylor (exp, {x,y}, 0, 2); comment An example that uses factorization; on factor; ff := y**5 - 1; zz := sub (y = taylor(e**x, x, 0, 3), ff); on exp; zz; comment The following shows the (limited) capabilities to integrate Taylor kernels. Only a toplevel Taylor kernel is supported, in all other cases a warning is printed and the Taylor kernels are converted to standard representation; zz := taylor (sin x, x, 0, 5); ww := taylor (cos y, y, 0, 5); int (zz, x); int (ww, x); int (zz + ww, x); comment And here we present Taylor series reversion. We start with the example given by Knuth for the algorithm; taylor (t - t**2, t, 0, 5); taylorrevert (ws, t, x); tan!-series := taylor (tan x, x, 0, 5); taylorrevert (tan!-series, x, y); atan!-series:=taylor (atan y, y, 0, 5); tmp := taylor (e**x, x, 0, 5); taylorrevert (tmp, x, y); taylor (log y, y, 1, 5); comment An application is the problem posed by Prof. Stanley: we prove that the finite difference expression below corresponds to the given derivative expression; operator diff,a,f,gg; % We use gg to avoid conflict with high energy % physics operator. for all f,arg let diff(f,arg) = df(f,arg); derivative!_expression := diff(a(x,y)*diff(gg(x,y),x)*diff(gg(x,y),y)*diff(f(x,y),y),x) + diff(a(x,y)*diff(gg(x,y),x)*diff(gg(x,y),y)*diff(f(x,y),x),y) ; finite!_difference!_expression := +a(x+dx,y+dy)*f(x+dx,y+dy)*gg(x+dx,y+dy)^2/(32*dx^2*dy^2) +a(x+dx,y)*f(x+dx,y+dy)*gg(x+dx,y+dy)^2/(32*dx^2*dy^2) +a(x,y+dy)*f(x+dx,y+dy)*gg(x+dx,y+dy)^2/(32*dx^2*dy^2) +a(x,y)*f(x+dx,y+dy)*gg(x+dx,y+dy)^2/(32*dx^2*dy^2) -f(x,y)*a(x+dx,y+dy)*gg(x+dx,y+dy)^2/(32*dx^2*dy^2) -f(x,y)*a(x+dx,y)*gg(x+dx,y+dy)^2/(32*dx^2*dy^2) -f(x,y)*a(x,y+dy)*gg(x+dx,y+dy)^2/(32*dx^2*dy^2) -a(x,y)*f(x,y)*gg(x+dx,y+dy)^2/(32*dx^2*dy^2) -gg(x,y)*a(x+dx,y+dy)*f(x+dx,y+dy)*gg(x+dx,y+dy)/(16*dx^2*dy^2) -gg(x,y)*a(x+dx,y)*f(x+dx,y+dy)*gg(x+dx,y+dy)/(16*dx^2*dy^2) -gg(x,y)*a(x,y+dy)*f(x+dx,y+dy)*gg(x+dx,y+dy)/(16*dx^2*dy^2) -a(x,y)*gg(x,y)*f(x+dx,y+dy)*gg(x+dx,y+dy)/(16*dx^2*dy^2) +f(x,y)*gg(x,y)*a(x+dx,y+dy)*gg(x+dx,y+dy)/(16*dx^2*dy^2) +f(x,y)*gg(x,y)*a(x+dx,y)*gg(x+dx,y+dy)/(16*dx^2*dy^2) +f(x,y)*gg(x,y)*a(x,y+dy)*gg(x+dx,y+dy)/(16*dx^2*dy^2) +a(x,y)*f(x,y)*gg(x,y)*gg(x+dx,y+dy)/(16*dx^2*dy^2) -gg(x+dx,y)^2*a(x+dx,y+dy)*f(x+dx,y+dy)/(32*dx^2*dy^2) +gg(x,y+dy)*gg(x+dx,y)*a(x+dx,y+dy)*f(x+dx,y+dy)/(16*dx^2*dy^2) -gg(x,y+dy)^2*a(x+dx,y+dy)*f(x+dx,y+dy)/(32*dx^2*dy^2) +gg(x,y)^2*a(x+dx,y+dy)*f(x+dx,y+dy)/(32*dx^2*dy^2) -a(x+dx,y)*gg(x+dx,y)^2*f(x+dx,y+dy)/(32*dx^2*dy^2) -a(x,y+dy)*gg(x+dx,y)^2*f(x+dx,y+dy)/(32*dx^2*dy^2) -a(x,y)*gg(x+dx,y)^2*f(x+dx,y+dy)/(32*dx^2*dy^2) +gg(x,y+dy)*a(x+dx,y)*gg(x+dx,y)*f(x+dx,y+dy)/(16*dx^2*dy^2) +a(x,y+dy)*gg(x,y+dy)*gg(x+dx,y)*f(x+dx,y+dy)/(16*dx^2*dy^2) +a(x,y)*gg(x,y+dy)*gg(x+dx,y)*f(x+dx,y+dy)/(16*dx^2*dy^2) -gg(x,y+dy)^2*a(x+dx,y)*f(x+dx,y+dy)/(32*dx^2*dy^2) +gg(x,y)^2*a(x+dx,y)*f(x+dx,y+dy)/(32*dx^2*dy^2) -a(x,y+dy)*gg(x,y+dy)^2*f(x+dx,y+dy)/(32*dx^2*dy^2) -a(x,y)*gg(x,y+dy)^2*f(x+dx,y+dy)/(32*dx^2*dy^2) +gg(x,y)^2*a(x,y+dy)*f(x+dx,y+dy)/(32*dx^2*dy^2) +a(x,y)*gg(x,y)^2*f(x+dx,y+dy)/(32*dx^2*dy^2) +f(x,y)*gg(x+dx,y)^2*a(x+dx,y+dy)/(32*dx^2*dy^2) -f(x,y)*gg(x,y+dy)*gg(x+dx,y)*a(x+dx,y+dy)/(16*dx^2*dy^2) +f(x,y)*gg(x,y+dy)^2*a(x+dx,y+dy)/(32*dx^2*dy^2) -f(x,y)*gg(x,y)^2*a(x+dx,y+dy)/(32*dx^2*dy^2) +a(x+dx,y-dy)*f(x+dx,y-dy)*gg(x+dx,y-dy)^2/(32*dx^2*dy^2) +a(x+dx,y)*f(x+dx,y-dy)*gg(x+dx,y-dy)^2/(32*dx^2*dy^2) +a(x,y-dy)*f(x+dx,y-dy)*gg(x+dx,y-dy)^2/(32*dx^2*dy^2) +a(x,y)*f(x+dx,y-dy)*gg(x+dx,y-dy)^2/(32*dx^2*dy^2) -f(x,y)*a(x+dx,y-dy)*gg(x+dx,y-dy)^2/(32*dx^2*dy^2) -f(x,y)*a(x+dx,y)*gg(x+dx,y-dy)^2/(32*dx^2*dy^2) -f(x,y)*a(x,y-dy)*gg(x+dx,y-dy)^2/(32*dx^2*dy^2) -a(x,y)*f(x,y)*gg(x+dx,y-dy)^2/(32*dx^2*dy^2) -gg(x,y)*a(x+dx,y-dy)*f(x+dx,y-dy)*gg(x+dx,y-dy)/(16*dx^2*dy^2) -gg(x,y)*a(x+dx,y)*f(x+dx,y-dy)*gg(x+dx,y-dy)/(16*dx^2*dy^2) -gg(x,y)*a(x,y-dy)*f(x+dx,y-dy)*gg(x+dx,y-dy)/(16*dx^2*dy^2) -a(x,y)*gg(x,y)*f(x+dx,y-dy)*gg(x+dx,y-dy)/(16*dx^2*dy^2) +f(x,y)*gg(x,y)*a(x+dx,y-dy)*gg(x+dx,y-dy)/(16*dx^2*dy^2) +f(x,y)*gg(x,y)*a(x+dx,y)*gg(x+dx,y-dy)/(16*dx^2*dy^2) +f(x,y)*gg(x,y)*a(x,y-dy)*gg(x+dx,y-dy)/(16*dx^2*dy^2) +a(x,y)*f(x,y)*gg(x,y)*gg(x+dx,y-dy)/(16*dx^2*dy^2) -gg(x+dx,y)^2*a(x+dx,y-dy)*f(x+dx,y-dy)/(32*dx^2*dy^2) +gg(x,y-dy)*gg(x+dx,y)*a(x+dx,y-dy)*f(x+dx,y-dy)/(16*dx^2*dy^2) -gg(x,y-dy)^2*a(x+dx,y-dy)*f(x+dx,y-dy)/(32*dx^2*dy^2) +gg(x,y)^2*a(x+dx,y-dy)*f(x+dx,y-dy)/(32*dx^2*dy^2) -a(x+dx,y)*gg(x+dx,y)^2*f(x+dx,y-dy)/(32*dx^2*dy^2) -a(x,y-dy)*gg(x+dx,y)^2*f(x+dx,y-dy)/(32*dx^2*dy^2) -a(x,y)*gg(x+dx,y)^2*f(x+dx,y-dy)/(32*dx^2*dy^2) +gg(x,y-dy)*a(x+dx,y)*gg(x+dx,y)*f(x+dx,y-dy)/(16*dx^2*dy^2) +a(x,y-dy)*gg(x,y-dy)*gg(x+dx,y)*f(x+dx,y-dy)/(16*dx^2*dy^2) +a(x,y)*gg(x,y-dy)*gg(x+dx,y)*f(x+dx,y-dy)/(16*dx^2*dy^2) -gg(x,y-dy)^2*a(x+dx,y)*f(x+dx,y-dy)/(32*dx^2*dy^2) +gg(x,y)^2*a(x+dx,y)*f(x+dx,y-dy)/(32*dx^2*dy^2) -a(x,y-dy)*gg(x,y-dy)^2*f(x+dx,y-dy)/(32*dx^2*dy^2) -a(x,y)*gg(x,y-dy)^2*f(x+dx,y-dy)/(32*dx^2*dy^2) +gg(x,y)^2*a(x,y-dy)*f(x+dx,y-dy)/(32*dx^2*dy^2) +a(x,y)*gg(x,y)^2*f(x+dx,y-dy)/(32*dx^2*dy^2) +f(x,y)*gg(x+dx,y)^2*a(x+dx,y-dy)/(32*dx^2*dy^2) -f(x,y)*gg(x,y-dy)*gg(x+dx,y)*a(x+dx,y-dy)/(16*dx^2*dy^2) +f(x,y)*gg(x,y-dy)^2*a(x+dx,y-dy)/(32*dx^2*dy^2) -f(x,y)*gg(x,y)^2*a(x+dx,y-dy)/(32*dx^2*dy^2) +f(x,y)*a(x+dx,y)*gg(x+dx,y)^2/(16*dx^2*dy^2) +f(x,y)*a(x,y+dy)*gg(x+dx,y)^2/(32*dx^2*dy^2) +f(x,y)*a(x,y-dy)*gg(x+dx,y)^2/(32*dx^2*dy^2) +a(x,y)*f(x,y)*gg(x+dx,y)^2/(16*dx^2*dy^2) -f(x,y)*gg(x,y+dy)*a(x+dx,y)*gg(x+dx,y)/(16*dx^2*dy^2) -f(x,y)*gg(x,y-dy)*a(x+dx,y)*gg(x+dx,y)/(16*dx^2*dy^2) -f(x,y)*a(x,y+dy)*gg(x,y+dy)*gg(x+dx,y)/(16*dx^2*dy^2) -a(x,y)*f(x,y)*gg(x,y+dy)*gg(x+dx,y)/(16*dx^2*dy^2) -f(x,y)*a(x,y-dy)*gg(x,y-dy)*gg(x+dx,y)/(16*dx^2*dy^2) -a(x,y)*f(x,y)*gg(x,y-dy)*gg(x+dx,y)/(16*dx^2*dy^2) +f(x,y)*gg(x,y+dy)^2*a(x+dx,y)/(32*dx^2*dy^2) +f(x,y)*gg(x,y-dy)^2*a(x+dx,y)/(32*dx^2*dy^2) -f(x,y)*gg(x,y)^2*a(x+dx,y)/(16*dx^2*dy^2) +a(x-dx,y+dy)*f(x-dx,y+dy)*gg(x-dx,y+dy)^2/(32*dx^2*dy^2) +a(x-dx,y)*f(x-dx,y+dy)*gg(x-dx,y+dy)^2/(32*dx^2*dy^2) +a(x,y+dy)*f(x-dx,y+dy)*gg(x-dx,y+dy)^2/(32*dx^2*dy^2) +a(x,y)*f(x-dx,y+dy)*gg(x-dx,y+dy)^2/(32*dx^2*dy^2) -f(x,y)*a(x-dx,y+dy)*gg(x-dx,y+dy)^2/(32*dx^2*dy^2) -f(x,y)*a(x-dx,y)*gg(x-dx,y+dy)^2/(32*dx^2*dy^2) -f(x,y)*a(x,y+dy)*gg(x-dx,y+dy)^2/(32*dx^2*dy^2) -a(x,y)*f(x,y)*gg(x-dx,y+dy)^2/(32*dx^2*dy^2) -gg(x,y)*a(x-dx,y+dy)*f(x-dx,y+dy)*gg(x-dx,y+dy)/(16*dx^2*dy^2) -gg(x,y)*a(x-dx,y)*f(x-dx,y+dy)*gg(x-dx,y+dy)/(16*dx^2*dy^2) -gg(x,y)*a(x,y+dy)*f(x-dx,y+dy)*gg(x-dx,y+dy)/(16*dx^2*dy^2) -a(x,y)*gg(x,y)*f(x-dx,y+dy)*gg(x-dx,y+dy)/(16*dx^2*dy^2) +f(x,y)*gg(x,y)*a(x-dx,y+dy)*gg(x-dx,y+dy)/(16*dx^2*dy^2) +f(x,y)*gg(x,y)*a(x-dx,y)*gg(x-dx,y+dy)/(16*dx^2*dy^2) +f(x,y)*gg(x,y)*a(x,y+dy)*gg(x-dx,y+dy)/(16*dx^2*dy^2) +a(x,y)*f(x,y)*gg(x,y)*gg(x-dx,y+dy)/(16*dx^2*dy^2) -gg(x-dx,y)^2*a(x-dx,y+dy)*f(x-dx,y+dy)/(32*dx^2*dy^2) +gg(x,y+dy)*gg(x-dx,y)*a(x-dx,y+dy)*f(x-dx,y+dy)/(16*dx^2*dy^2) -gg(x,y+dy)^2*a(x-dx,y+dy)*f(x-dx,y+dy)/(32*dx^2*dy^2) +gg(x,y)^2*a(x-dx,y+dy)*f(x-dx,y+dy)/(32*dx^2*dy^2) -a(x-dx,y)*gg(x-dx,y)^2*f(x-dx,y+dy)/(32*dx^2*dy^2) -a(x,y+dy)*gg(x-dx,y)^2*f(x-dx,y+dy)/(32*dx^2*dy^2) -a(x,y)*gg(x-dx,y)^2*f(x-dx,y+dy)/(32*dx^2*dy^2) +gg(x,y+dy)*a(x-dx,y)*gg(x-dx,y)*f(x-dx,y+dy)/(16*dx^2*dy^2) +a(x,y+dy)*gg(x,y+dy)*gg(x-dx,y)*f(x-dx,y+dy)/(16*dx^2*dy^2) +a(x,y)*gg(x,y+dy)*gg(x-dx,y)*f(x-dx,y+dy)/(16*dx^2*dy^2) -gg(x,y+dy)^2*a(x-dx,y)*f(x-dx,y+dy)/(32*dx^2*dy^2) +gg(x,y)^2*a(x-dx,y)*f(x-dx,y+dy)/(32*dx^2*dy^2) -a(x,y+dy)*gg(x,y+dy)^2*f(x-dx,y+dy)/(32*dx^2*dy^2) -a(x,y)*gg(x,y+dy)^2*f(x-dx,y+dy)/(32*dx^2*dy^2) +gg(x,y)^2*a(x,y+dy)*f(x-dx,y+dy)/(32*dx^2*dy^2) +a(x,y)*gg(x,y)^2*f(x-dx,y+dy)/(32*dx^2*dy^2) +f(x,y)*gg(x-dx,y)^2*a(x-dx,y+dy)/(32*dx^2*dy^2) -f(x,y)*gg(x,y+dy)*gg(x-dx,y)*a(x-dx,y+dy)/(16*dx^2*dy^2) +f(x,y)*gg(x,y+dy)^2*a(x-dx,y+dy)/(32*dx^2*dy^2) -f(x,y)*gg(x,y)^2*a(x-dx,y+dy)/(32*dx^2*dy^2) +a(x-dx,y-dy)*f(x-dx,y-dy)*gg(x-dx,y-dy)^2/(32*dx^2*dy^2) +a(x-dx,y)*f(x-dx,y-dy)*gg(x-dx,y-dy)^2/(32*dx^2*dy^2) +a(x,y-dy)*f(x-dx,y-dy)*gg(x-dx,y-dy)^2/(32*dx^2*dy^2) +a(x,y)*f(x-dx,y-dy)*gg(x-dx,y-dy)^2/(32*dx^2*dy^2) -f(x,y)*a(x-dx,y-dy)*gg(x-dx,y-dy)^2/(32*dx^2*dy^2) -f(x,y)*a(x-dx,y)*gg(x-dx,y-dy)^2/(32*dx^2*dy^2) -f(x,y)*a(x,y-dy)*gg(x-dx,y-dy)^2/(32*dx^2*dy^2) -a(x,y)*f(x,y)*gg(x-dx,y-dy)^2/(32*dx^2*dy^2) -gg(x,y)*a(x-dx,y-dy)*f(x-dx,y-dy)*gg(x-dx,y-dy)/(16*dx^2*dy^2) -gg(x,y)*a(x-dx,y)*f(x-dx,y-dy)*gg(x-dx,y-dy)/(16*dx^2*dy^2) -gg(x,y)*a(x,y-dy)*f(x-dx,y-dy)*gg(x-dx,y-dy)/(16*dx^2*dy^2) -a(x,y)*gg(x,y)*f(x-dx,y-dy)*gg(x-dx,y-dy)/(16*dx^2*dy^2) +f(x,y)*gg(x,y)*a(x-dx,y-dy)*gg(x-dx,y-dy)/(16*dx^2*dy^2) +f(x,y)*gg(x,y)*a(x-dx,y)*gg(x-dx,y-dy)/(16*dx^2*dy^2) +f(x,y)*gg(x,y)*a(x,y-dy)*gg(x-dx,y-dy)/(16*dx^2*dy^2) +a(x,y)*f(x,y)*gg(x,y)*gg(x-dx,y-dy)/(16*dx^2*dy^2) -gg(x-dx,y)^2*a(x-dx,y-dy)*f(x-dx,y-dy)/(32*dx^2*dy^2) +gg(x,y-dy)*gg(x-dx,y)*a(x-dx,y-dy)*f(x-dx,y-dy)/(16*dx^2*dy^2) -gg(x,y-dy)^2*a(x-dx,y-dy)*f(x-dx,y-dy)/(32*dx^2*dy^2) +gg(x,y)^2*a(x-dx,y-dy)*f(x-dx,y-dy)/(32*dx^2*dy^2) -a(x-dx,y)*gg(x-dx,y)^2*f(x-dx,y-dy)/(32*dx^2*dy^2) -a(x,y-dy)*gg(x-dx,y)^2*f(x-dx,y-dy)/(32*dx^2*dy^2) -a(x,y)*gg(x-dx,y)^2*f(x-dx,y-dy)/(32*dx^2*dy^2) +gg(x,y-dy)*a(x-dx,y)*gg(x-dx,y)*f(x-dx,y-dy)/(16*dx^2*dy^2) +a(x,y-dy)*gg(x,y-dy)*gg(x-dx,y)*f(x-dx,y-dy)/(16*dx^2*dy^2) +a(x,y)*gg(x,y-dy)*gg(x-dx,y)*f(x-dx,y-dy)/(16*dx^2*dy^2) -gg(x,y-dy)^2*a(x-dx,y)*f(x-dx,y-dy)/(32*dx^2*dy^2) +gg(x,y)^2*a(x-dx,y)*f(x-dx,y-dy)/(32*dx^2*dy^2) -a(x,y-dy)*gg(x,y-dy)^2*f(x-dx,y-dy)/(32*dx^2*dy^2) -a(x,y)*gg(x,y-dy)^2*f(x-dx,y-dy)/(32*dx^2*dy^2) +gg(x,y)^2*a(x,y-dy)*f(x-dx,y-dy)/(32*dx^2*dy^2) +a(x,y)*gg(x,y)^2*f(x-dx,y-dy)/(32*dx^2*dy^2) +f(x,y)*gg(x-dx,y)^2*a(x-dx,y-dy)/(32*dx^2*dy^2) -f(x,y)*gg(x,y-dy)*gg(x-dx,y)*a(x-dx,y-dy)/(16*dx^2*dy^2) +f(x,y)*gg(x,y-dy)^2*a(x-dx,y-dy)/(32*dx^2*dy^2) -f(x,y)*gg(x,y)^2*a(x-dx,y-dy)/(32*dx^2*dy^2) +f(x,y)*a(x-dx,y)*gg(x-dx,y)^2/(16*dx^2*dy^2) +f(x,y)*a(x,y+dy)*gg(x-dx,y)^2/(32*dx^2*dy^2) +f(x,y)*a(x,y-dy)*gg(x-dx,y)^2/(32*dx^2*dy^2) +a(x,y)*f(x,y)*gg(x-dx,y)^2/(16*dx^2*dy^2) -f(x,y)*gg(x,y+dy)*a(x-dx,y)*gg(x-dx,y)/(16*dx^2*dy^2) -f(x,y)*gg(x,y-dy)*a(x-dx,y)*gg(x-dx,y)/(16*dx^2*dy^2) -f(x,y)*a(x,y+dy)*gg(x,y+dy)*gg(x-dx,y)/(16*dx^2*dy^2) -a(x,y)*f(x,y)*gg(x,y+dy)*gg(x-dx,y)/(16*dx^2*dy^2) -f(x,y)*a(x,y-dy)*gg(x,y-dy)*gg(x-dx,y)/(16*dx^2*dy^2) -a(x,y)*f(x,y)*gg(x,y-dy)*gg(x-dx,y)/(16*dx^2*dy^2) +f(x,y)*gg(x,y+dy)^2*a(x-dx,y)/(32*dx^2*dy^2) +f(x,y)*gg(x,y-dy)^2*a(x-dx,y)/(32*dx^2*dy^2) -f(x,y)*gg(x,y)^2*a(x-dx,y)/(16*dx^2*dy^2) +f(x,y)*a(x,y+dy)*gg(x,y+dy)^2/(16*dx^2*dy^2) +a(x,y)*f(x,y)*gg(x,y+dy)^2/(16*dx^2*dy^2) -f(x,y)*gg(x,y)^2*a(x,y+dy)/(16*dx^2*dy^2) +f(x,y)*a(x,y-dy)*gg(x,y-dy)^2/(16*dx^2*dy^2) +a(x,y)*f(x,y)*gg(x,y-dy)^2/(16*dx^2*dy^2) -f(x,y)*gg(x,y)^2*a(x,y-dy)/(16*dx^2*dy^2) -a(x,y)*f(x,y)*gg(x,y)^2/(8*dx^2*dy^2)$ comment We define abbreviations for the partial derivatives; operator ax,ay,fx,fy,gx,gy; for all x,y let df(a(x,y),x) = ax(x,y); for all x,y let df(a(x,y),y) = ay(x,y); for all x,y let df(f(x,y),x) = fx(x,y); for all x,y let df(f(x,y),y) = fy(x,y); for all x,y let df(gg(x,y),x) = gx(x,y); for all x,y let df(gg(x,y),y) = gy(x,y); operator axx,axy,ayy,fxx,fxy,fyy,gxx,gxy,gyy; for all x,y let df(ax(x,y),x) = axx(x,y); for all x,y let df(ax(x,y),y) = axy(x,y); for all x,y let df(ay(x,y),x) = axy(x,y); for all x,y let df(ay(x,y),y) = ayy(x,y); for all x,y let df(fx(x,y),x) = fxx(x,y); for all x,y let df(fx(x,y),y) = fxy(x,y); for all x,y let df(fy(x,y),x) = fxy(x,y); for all x,y let df(fy(x,y),y) = fyy(x,y); for all x,y let df(gx(x,y),x) = gxx(x,y); for all x,y let df(gx(x,y),y) = gxy(x,y); for all x,y let df(gy(x,y),x) = gxy(x,y); for all x,y let df(gy(x,y),y) = gyy(x,y); operator axxx,axxy,axyy,ayyy,fxxx,fxxy,fxyy,fyyy,gxxx,gxxy,gxyy,gyyy; for all x,y let df(axx(x,y),x) = axxx(x,y); for all x,y let df(axy(x,y),x) = axxy(x,y); for all x,y let df(ayy(x,y),x) = axyy(x,y); for all x,y let df(ayy(x,y),y) = ayyy(x,y); for all x,y let df(fxx(x,y),x) = fxxx(x,y); for all x,y let df(fxy(x,y),x) = fxxy(x,y); for all x,y let df(fxy(x,y),y) = fxyy(x,y); for all x,y let df(fyy(x,y),x) = fxyy(x,y); for all x,y let df(fyy(x,y),y) = fyyy(x,y); for all x,y let df(gxx(x,y),x) = gxxx(x,y); for all x,y let df(gxx(x,y),y) = gxxy(x,y); for all x,y let df(gxy(x,y),x) = gxxy(x,y); for all x,y let df(gxy(x,y),y) = gxyy(x,y); for all x,y let df(gyy(x,y),x) = gxyy(x,y); for all x,y let df(gyy(x,y),y) = gyyy(x,y); operator axxxy,axxyy,axyyy,fxxxy,fxxyy,fxyyy, gxxxx,gxxxy,gxxyy,gxyyy,gyyyy; for all x,y let df(axyy(x,y),x) = axxyy(x,y); for all x,y let df(axxy(x,y),x) = axxxy(x,y); for all x,y let df(ayyy(x,y),x) = axyyy(x,y); for all x,y let df(fxxy(x,y),x) = fxxxy(x,y); for all x,y let df(fxyy(x,y),x) = fxxyy(x,y); for all x,y let df(fyyy(x,y),x) = fxyyy(x,y); for all x,y let df(gxxx(x,y),x) = gxxxx(x,y); for all x,y let df(gxxy(x,y),x) = gxxxy(x,y); for all x,y let df(gxyy(x,y),x) = gxxyy(x,y); for all x,y let df(gyyy(x,y),x) = gxyyy(x,y); for all x,y let df(gyyy(x,y),y) = gyyyy(x,y); operator axxxyy,axxyyy,fxxyyy,fxxxyy,gxxxxy,gxxxyy,gxxyyy,gxyyyy; for all x,y let df(axxyy(x,y),x) = axxxyy(x,y); for all x,y let df(axyyy(x,y),x) = axxyyy(x,y); for all x,y let df(fxxyy(x,y),x) = fxxxyy(x,y); for all x,y let df(fxyyy(x,y),x) = fxxyyy(x,y); for all x,y let df(gxxxy(x,y),x) = gxxxxy(x,y); for all x,y let df(gxxyy(x,y),x) = gxxxyy(x,y); for all x,y let df(gxyyy(x,y),x) = gxxyyy(x,y); for all x,y let df(gyyyy(x,y),x) = gxyyyy(x,y); operator gxxxxyy,gxxxyyy,gxxyyyy; for all x,y let df(gxxxyy(x,y),x) = gxxxxyy(x,y); for all x,y let df(gxxyyy(x,y),x) = gxxxyyy(x,y); for all x,y let df(gxyyyy(x,y),x) = gxxyyyy(x,y); texp := taylor (finite!_difference!_expression, dx, 0, 1, dy, 0, 1); comment You may also try to expand further but this needs a lot of CPU time. Therefore the following line is commented out; %texp := taylor (finite!_difference!_expression, dx, 0, 2, dy, 0, 2); factor dx,dy; result := taylortostandard texp; derivative!_expression - result; comment That's all, folks; showtime; end;