Artifact 28726ee463d3afc955d213eb77dfbf9d5e987edb6a92889de44f8a7ee50e237d:
- Executable file
r38/packages/plot/gnuplot.tst
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 3085) [annotate] [blame] [check-ins using] [more...]
on demo; plot(sin x,x=(-3 .. 3)); plot(s=sin phi,phi=(-3 .. 3)); plot(sin phi,cos phi,phi=(-3 .. 3)); plot(sin(1/x),x=(-1 .. 1),y=(-3 .. 3)); plot(sin(1/x),x=(-10 .. 10)); plot(y=tan x,y=(-10 .. 10)); plot (cos sqrt(x**2 + y**2),x=(-3 .. 3),y=(-3 .. 3)); plot (cos sqrt(x**2 + y**2),x=(-3 .. 3),y=(-3 .. 3),hidden3d); plot(x*y, x=(0 .. 2), y=(0 .. 2)); plot(x*y, x=(-2 .. 2), y=(-2 .. 2)); plot(x+y, x=(0 .. 2), y=(0 .. 2)); plot(1/(x**2+y**2),x=(-0.5 .. 0.5),y=(-0.5 .. 0.5)); plot(1/(x**2+y**2),x=(-0.5 .. 0.5),y=(-0.5 .. 0.5),hidden3d); plot(1/(x**2+y**2),x=(0.1 .. 5),y=(0.1 .. 5),size="0.7,1"); plot(1/(x**2+y**2),x=(0.1 .. 5),y=(0.1 .. 5),view="30,89"); plot(1/(x**2+y**2),x=(-0.5 .. 0.5),y=(-0.5 .. 0.5), hidden3d,contour,view="70,20"); % this may be slow on some machines because of % a delicate evaluation context. plot(sinh(x*y)/sinh(2*x*y),hidden3d); %parametric curves and surfaces plot(point(cos(u),sin(u),0.1*u),u=(0 .. 4*pi),points=100); plot(point(sin(u)*cos(v),sin(u)*sin(v),cos(u)),u=(0 .. pi),v=(0 .. 2*pi) ,points=60); % implicit curves and surfaces plot(x^3+y^3 -3*x*y ={0,1,2,3},x=(-2.5 .. 2),y=(-5 .. 5)); plot(x^2+y^2+z^2-1=0,x=(-1 .. 1),y=(-1 .. 1),points=40); % equations and parts wss := {{u=(665280*t**6 + 1995840*t**5*x**2 - 3991680*t**5 + 831600*t**4*x**4 - 9979200 *t**4*x**2 + 19958400*t**4 + 110880*t**3*x**6 - 3326400*t**3*x**4 + 39916800*t**3*x**2 - 79833600*t**3 + 5940*t**2*x**8 - 332640*t**2*x**6 + 9979200*t**2*x**4 - 119750400*t**2*x**2 + 239500800*t**2 + 132*t*x**10 - 11880*t*x**8 + 665280*t*x**6 - 19958400*t*x**4 + 239500800*t*x**2 - 479001600*t + x**12 - 132*x**10 + 11880*x**8 - 665280*x**6 + 19958400*x**4 - 239500800*x**2 + 479001600)/479001600}}$ plot(rhs first first wss,x=(-5 .. 5),t=(-1 .. 1),hidden3d); % general curves and surfaces computed as lists of data points plot {{0,0},{0,1},{1,1},{0,0},{1,0},{0,1},{0.5,1.5},{1,1},{1,0}}; on rounded; w:=for j:=1:200 collect {1/j*sin j,1/j*cos j,j/200}$ plot w; % the following examples need some computing time w:= {for j:=1 step 0.1 until 20 collect {1/j*sin j,1/j*cos j,j}, for j:=1 step 0.1 until 20 collect {(0.1+1/j)*sin j,(0.1+1/j)*cos j,j} }$ plot w; dd:=pi/15; w:=for u:=dd step dd until pi-dd collect for v:=0 step dd until 2pi collect {sin(u)*cos(v), sin(u)*sin(v), cos(u)}$ plot w; symbolic procedure ikeda(tt); % from Willi-Hans Steeb: The NONLINEAR WORKBOOK, chap. 1.2 % World Scientific, 1999 begin scalar taut,X,Y,x1,y1,c1,c2,c3,rho; x := 0.5; y := 0.5; c1 := 0.4; c2 := 0.9; c3 := 9.0; rho := 0.85; return 'list . for ttt :=0:tt collect << x1 := x; y1 := y; taut := c1 -c3/(1 + x1^2 + y1^2); x := rho + c2*x1*cos taut - y1*sin(taut); y := c2*(x1*sin(taut) + y1*cos(taut)); list('list, floor (90*x +200 + 0.5), floor (90*y +200 + 0.5)) >>; end; ikeda := lisp ikeda(20000)$ plot(ikeda,style=points); plot(ikeda,style=dots); plot(ikeda,style=errorbars); plotreset; end;