Artifact 27a0a1b1dd838cbfa192feb3dcdf646764d2ba89213fa74828046e560f0dae29:
- Executable file
r38/packages/solve/modsr.tex
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 1001) [annotate] [blame] [check-ins using] [more...]
\documentclass[12pt]{article} \newcommand{\ttindex}[1]{{\renewcommand{\_}{\protect\underscore}% \index{#1@{\tt #1}}}} \title{MODSR: Modular solve and roots} \author{ Herbert Melenk \\ Konrad--Zuse--Zentrum f\"ur Informationstechnik Berlin \\ Takustra\"se 7 \\ D--14195 Berlin--Dahlem, Germany \\[0.05in] e--mail: melenk@zib.de } \begin{document} \maketitle This package supports the SOLVE and ROOTS operators for modular polynomials and modular polynomial systems. The moduli need not be primes. {\tt M\_SOLVE} requires a modulus to be set. {\tt M\_ROOTS} takes the modulus as a second argument. For example: \begin{verbatim} on modular; setmod 8; m_solve(2x=4); -> {{X=2},{X=6}} m_solve({x^2-y^3=3}); -> {{X=0,Y=5}, {X=2,Y=1}, {X=4,Y=5}, {X=6,Y=1}} m_solve({x=2,x^2-y^3=3}); -> {{X=2,Y=1}} off modular; m_roots(x^2-1,8); -> {1,3,5,7} m_roots(x^3-x,7); -> {0,1,6} \end{verbatim} \end{document}